Summary Report

Derive Entities Emissions Testing

April 12, 2016

Submitted to:

U.S. ENVIRONMENTAL PROTECTION AGENCY William Jefferson Clinton Building, 1200 Pennsylvania Ave., NW, Washington, DC 20004

Submitted by:

Eastern Research Group, Inc. 14555 Avion Parkway, Suite 200 Chantilly, VA 20151

EPA Contract No. EP-W-12-007 EPA WA-2-1

(page intenti	onally left bl	ank)	

EXECUTIVE SUMMARY

In October and November 2015, a compliance inspection team consisting of staff from EPA and EPA's contractor, Eastern Research Group, Inc. (ERG) conducted emissions tests using electronic control module (ECM) tuners manufactured by Derive Entities on diesel and gasoline engines. Derive Entities is the parent company of several subsidiaries including Bully Dog Acquisition, LLC (Bully Dog) and SCT Performance, LLC (SCT). This report summarizes dynamometer emissions testing performed by EPA and ERG using Bully Dog's Diesel GT tuner (PN: 40420) and SCT's X4 Powerflash tuner (PN: 7015) on a model year (MY) 2012 Ford F-250 test vehicle with a 6.7 liter Ford Powerstroke diesel engine and a MY 2013 Ford F-150 with a 3.5 Liter Eco boost gasoline engine, respectively. The test results confirm that the Bully Dog 40420 tuner, when installed on a MY 2012 F-250 with a 6.7 liter Powerstroke diesel engine, causes nitrous oxide (NO_x) emissions to nearly triple on the Federal Test Procedure (FTP) and exceed the applicable emissions standard for this engine. The test results also confirm that the SCT 7015 tuner alters the 3.5 Liter Ford EcoBoost engine's operational design but does not increase regulated exhaust emissions on this vehicle application over the test cycles used. Further, the manufacturer of these tuners has not provided EPA any emissions test results demonstrating that this tuner does not adversely affect emissions.

(page intentionally left blank)

TABLE OF CONTENTS

			Page
I.	Inve	STIGATION BACKGROUND AND PURPOSE OF TESTING	5
II.	Purc	HASE OF ECM TUNERS	7
11.	A.	Bully Dog 40420 Tuner	
	B.	SCT 7015 Tuner	
III.	EMIS	SIONS TESTING PROCEDURES AND DOCUMENTATION	8
	A.	Test Vehicles	8
	B.	Testing Procedures	10
		1. Tuner Installation	12
		2. OBD Scan Tool Data Procedure	
		3. Live Engine Data Logging Procedure and Analysis	15
		4. Test Cycle Selection and Test Procedure	
	C.	Quality Assurance and Other Documentation	
IV.	EMIS	SIONS TESTING RESULTS	22
	A.	OBD Scan Tool Data Observations	
		1. F-250 – 6.7 Liter Ford Powerstroke	
		1. F-150 – 3.5 Liter Ford EcoBoost	23
	B.	Live Engine Data	
		1. F-250 – 6.7 Liter Ford Powerstroke	24
		1. F-150 – 3.5 Liter Ford EcoBoost	32
	C.	Measured Emissions Results	34
		1. F-250 – 6.7 Liter Ford Powerstroke	34
		1. F-150 – 3.5 Liter Ford EcoBoost	36
APPE	NDIX A	PHOTOGRAPH LOG	38
APPE	NDIX B	CHRONOLOGICAL ORDER OF PROCEDURES PERFORMED BY ERG AND EPA	72
APPE	NDIX C	MISCELLANEOUS EMAIL DOCUMENTATION	75
APPE	NDIX D	RAW EMISSIONS TEST DATA FROM EPA NVEFEL	75
APPE	NDIX E I	DYNAMOMETER COEFFICIENT DOCUMENTATION FROM EPA NVFEL	75
APPE	NDIX F I	LIVE DATA ANALYSIS – F-25 TEST VEHICLE WITH THE BULLY DOG 40420 TUNER	75
APPE	NDIX G	LIVE DATA ANALYSIS – F-150 TEST VEHICLE WITH THE SCT 7015 TUNER	75
APPE	NDIX H	BULLY DOG TUNER – CUSTOMER COMPLAINTS REGARDING DPF REGENERATION	75

Derive Emissions	Testing	Summary	Report
------------------	---------	---------	--------

(This page intentionally left blank.)

A compliance inspection team consisting of staff from EPA and EPA's contractor, ERG, investigated SCT and Bully Dog for manufacturing and selling potential defeat devices for on-highway engines. The inspection team purchased SCT and Bully Dog ECM tuning devices, installed modified calibrations on test vehicles using the tuners, and performed emissions testing. The EPA and ERG traveled to EPA's National Vehicle and Fuel Emissions Laboratory (NVFEL) the weeks of 26 October and 2 November 2015 to conduct emission testing on a model year (MY) 2012 Ford F-250 test vehicle with a 6.7 Liter Ford Powerstroke diesel engine and a MY 2013 Ford F-150 with a 3.5 Liter EcoBoost gasoline engine. The purpose of this testing was to identify which engine controls are altered by the SCT and Bully Dog tuners and how use of these tuners affect emissions of regulated pollutants.

Report Recipients: Andrew Zellinger, EPA Region 9

Margaret Alkon, EPA Region 9

Kathryn Caballero, MSEB, EPA Headquarters

EPA Representatives: Greg Orehowsky, MSEB, EPA Headquarters

John Spieth, EPA, OTAQ, EPA NVFEL Arleen Smithson, OTAQ, EPA NVFEL

EPA Contractors: Brent Ruminski, ERG

Aasim Rawoot, ERG Michael Sabisch, ERG Andrew Loll, ERG

Ford Representatives:

This report is organized as follows:

- Section I provides the background on Derive as a business, EPA's investigation of Derive, and the purpose of this testing.
- Section II describes the purchases of the Bully Dog and SCT tuners that were tested.
- Section III provides descriptions of the test vehicles, tuner installation, testing procedures, and quality assurance and other documentation.
- Section IV provides the testing results including on-board diagnostics (OBD) data, live engine data, and emissions data.
- Appendix A contains photographs taken during the investigation. Photographs are referenced in the report as Photograph [#].
- Appendix B is a table containing a chronological order of emissions testing activities performed by ERG, EPA, and Ford.
- Appendix C contains miscellaneous email documentation.
- Appendix D contains the raw emissions test data from EPA's NVFEL.
- Appendix E contains dynamometer coefficient documentation from EPA's NVFEL.
- Appendix F and G contain ERG's analysis of live engine data logged during testing.
- Appendix H contains screenshots of internet forums related to Bully Dog tuner customers who
 have complained about DPF regeneration.

I. INVESTIGATION BACKGROUND AND PURPOSE OF TESTING

As the business is currently structured, Derive is the parent company to several subsidiaries including, but not limited to, SCT Performance LLC (SCT) and Bully Dog Acquisitions LLC (Bully Dog). ERG

collectively refers to the business as "Derive" where appropriate in this report. Below is a general list of products that Derive manufactures and sells.

- Electronic Control Modules (ECM) Tuners
- Custom Tuning Software (SCT Advantage III)
- Custom Fleet Tunes

The purpose of the testing described in this report was to evaluate how the ECM tuners that Derive manufactures and sells may affect emissions. Specifically, EPA's goal was to evaluate if the modified calibrations installed by the tuners cause the vehicle to exceed exhaust emission standards for which the test vehicles were certified to meet. Secondly, EPA's goal for this testing was to evaluate the relative change in emissions from the test vehicle when using modified calibrations installed via a tuner compared to the stock calibration (i.e., baseline).

These tuners are devices that plug into a vehicle's on-board diagnostic (OBD) data link connector (DLC) (i.e., port) and then can be used to "flash" the ECM with a modified calibration (i.e., tune). All Derive tuners come with pre-loaded calibrations manufactured by Derive but can also support "custom" tunes manufactured by other companies. Each tuner comes with multiple pre-loaded tunes that are compatible with different vehicle and engine models and MYs.

During this testing, the EPA and ERG focused on testing pre-loaded tunes (i.e., no custom tunes) with two specific tuner models: the Bully Dog GT Platinum Diesel tuner (PN: 40420) and the SCT X4 Powerflash tuner (PN: 7015). ERG refers to these tuners as the Bully Dog 40420 tuner and SCT 7015 tuner for the remainder of this report. Testing was performed on two specific test vehicles: a MY 2012 Ford F250 with a 6.7 liter Powerstroke diesel engine and a MY 2013 Ford F150 with a 3.5 liter EcoBoost gasoline engine. The modifications the tuners make depend on the vehicle and engine model and MY on which they are installed. Therefore, the effect these tuners may cause on emissions are likely to be different for other vehicle and engines models and MYs.

In general, there are two types of calibrations:

- Emissions equipment-present calibrations: These calibrations modify engine parameters such as fuel injection/spark timing, air to fuel ratio, torque management, and other parameters to optimize power and fuel economy. Such modifications may adversely affect emissions but do not require the emission control devices (e.g., EGR, DPF, SCR) to be rendered inoperative or to be bypassed. EPA's goal is to determine what engine parameters these types of calibrations alter and if these alterations adversely affect emissions.
- Emissions equipment-removed calibrations: These calibrations render inoperative or bypass emission control devices (e.g., EGR, DPF, SCR) in the engine calibration in addition to modifying engine parameters such as fuel injection/spark timing, air to fuel ratio, torque management, and other parameters to optimize power and fuel economy. EPA's goal is to determine if the tuner renders inoperative or bypasses emission control devices and if these alterations adversely affect emissions.

The testing summarized in this report identified no evidence that the Bully Dog 40420 and SCT 7015 tuners contain pre-loaded¹ emissions equipment-*removed* calibrations for the test vehicle models² tested. However, the testing of the pre-loaded emissions equipment-*present* calibration installed by the Bully Dog 40420 tuner confirm that emissions are adversely affected (see Section IV for results). It is also important to note that these tuners are compatible with many different vehicles, engines, and MYs and the

¹ Pre-loaded calibrations are those that are manufactured by SCT or Bully Dog.

² Ford was only able to provide the two test vehicle models described in Section III.A and was unable to provide other test vehicle models for which SCT tuners are capable of disabling emission controls.

modifications made by the tuners vary for each. In fact, during other investigation activities, the EPA and ERG have determined that several of Derive's products, including the SCT 7015 tuner, can disable emission control devices on *other* vehicle and engine models. Furthermore, many of Derive's products, including the tuners discussed in this report, support installation of custom tunes that are known to disable emission control devices. This report does not discuss these areas of concern; they are described in a separate memorandum titled *TD69 – Derive Product Purchase Memorandum*.³ All the areas of concern identified during the investigation of Derive are summarized in a separate memorandum titled *TD66 – Derive Investigation Summary and CAA 208 Information Request Response Review*.⁴

II. PURCHASE OF ECM TUNERS

ERG purchased the Bully Dog 40420 tuner and SCT 7015 tuners as a typical customer would from aftermarket dealers. The following two subsections summarize ERG's purchase of the tuners, both of which were used to perform emissions testing the weeks of 26 October 2015 and 11 November 2015. A detailed timeline of tuner purchase and testing events are provided in Appendix B. Once received, ERG handled all items as evidence, completed chain-of-custody forms for each upon receipt, and properly maintained the documentation and evidence throughout the investigation. The purchases of both tuners are documented in more detail in ERG's memorandum titled *TD69 – Derive Product Purchase Memorandum*.⁵

A. Bully Dog 40420 Tuner

ERG purchased a Bully Dog 40420 tuner directly from Punch-It Performance, LLC, a company the EPA and ERG inspected on 4 August 2015. ERG was unable to take possession of the tuner that day because Punch-It did not have one in stock. Instead, the unit was shipped directly from Bully Dog Acquisitions located at 2839 Highway 39 in American Falls, Idaho 83211 to ERG's office. The total cost of the tuner was \$649. ERG received the unit on 11 August 2015. Photographs [1] through [5] show the Bully Dog 40420 tuner as received by ERG. The serial number of the tuner is 30V6S0F7L000T and the Punch-It Performance UPC code is 681018404204. Photograph [5] shows the contents of the tuner packaging:

- Tuner (PN: 40420);
- Small SD card;
- USB dongle;
- Quick reference guide;
- OBD II wire, used to connect the tuner to the OBD data link connector; and
- USB wire, used to connect the tuner to a computer for software updates from Bully Dog.

B. <u>SCT 7015 Tuner</u>

ERG purchased an SCT 7015 tuner directly from Punch-It Performance, LLC, a company the EPA and ERG inspected on 4 August 2015, and took possession of the tuner the same day. The total cost of the tuner was \$399. Photographs [6] through [8] show the SCT 7015 tuner as received by ERG. The serial

³ Under Contract #EP-W-12-007 Work Assignment WA-2-1 Technical Direction 69, the EPA directed ERG to purchase multiple SCT and Bully Dog products and evaluate their tuning capabilities.

⁴ Under Contract #EP-W-12-007 Work Assignment WA-2-1 Technical Direction 66, the EPA directed ERG support EPA's investigation of Derive including, but not limited to, reviewing Derive's CAA 208 Information Request response.

⁵ Under Contract #EP-W-12-007 Work Assignment WA-2-1 Technical Direction 69, the EPA directed ERG to purchase multiple SCT and Bully Dog products and evaluate their capabilities.

number of the unit is X40717156ECA5 and the SCT UPC code is 811252020001. Photograph [6] shows the contents of the packaging:

- OBD II wire, used to connect the tuner to the OBD data link connector on the vehicle;
- USB wire, used to connect the tuner to a computer for software updates from SCT; and
- SCT warranty document.

III. EMISSIONS TESTING PROCEDURES AND DOCUMENTATION

Ford Motor Company (Ford) agreed to provide EPA with two test vehicles for EPA to conduct testing to measure emissions and engine operating data when calibrations from the Bully Dog 40420 and SCT 7015 tuners are installed. The EPA and ERG traveled to EPA's NVFEL testing facility in Ann Arbor, Michigan the weeks of 26 October 2015 and 2 November 2015 to conduct the testing. EPA's NVFEL personnel performed testing and ERG provided testing oversight and installed the calibrations. The following two subsections describe the test vehicles that Ford provided for testing, along with the complete testing procedures.

A. <u>Test Vehicles</u>

Table 1 provides a detailed description of the test vehicles Ford provided which included a MY 2012 F-250 with a 6.7 Liter Powerstroke turbo diesel engine and a MY 2012 F-250 with a 3.5 Liter Ford EcoBoost twin turbo direct injection gasoline engine. Photographs [9] through [15] show the MY 2012 F-250 diesel test vehicle prior to any testing. Photographs [16] through [22] show the MY 2013 F-150 gasoline test vehicle prior to any testing.

Table 1. Test Vehicle Description

Parameter	MY 2012 Diesel Vehicle	MY 2013 Gasoline Vehicle
Chassis manufacturer	Ford Motor Company	Ford Motor Company
Chassis model	F-250	F-150
Chassis date of manufacture	July 2011	May 2012
Engine manufacturer	Ford Motor Company	Ford Motor Company
Engine MY	2012	2013
EPA engine family	CFMXD06.761A	DFMXT03.54DX ^b
Engine configuration	V-8	V-6
Engine size	6.7 liters	3.5 liters
Fuel	diesel	gasoline
GVWR	10,000 pounds	7,700 pounds
VIN	1FT7W2BT7CEA03971	1FTFW1ET6DFA00007
Odometer beginning of testing	52,765 miles	46,992 miles
Aftertreatment mileage ^c	52,765 miles	46,992 miles
Useful Life	120,000 miles	120,000 miles
Emissions equipment	OC, period trap oxidizer (PTOX) ^a , SCR, EGR, turbo charger (TC), Charge air cooler (CAC), direct diesel injection (DDI), OBD	2 three way catalysts (TWC), 2 heated air-fuel ration sensors (AFS), 2 heated oxygen sensors (HO2S), direct fuel injection (DFI), 2 TC, CAC, OBD

a – This system contains the DPF.

b – ERG was unable to identify the engine label on the F-150. Ford reported it to EPA MSEB after testing (see Appendix C).

c – Ford confirmed the aftertreatment mileage matches the odometer reading on both test vehicles (see Appendix C).

Table 2 and Table 3 show the additive deterioration factors (DF), engine adjustment factors (EAF), certification levels, and emissions standards for the two test vehicles based on certification testing. The relevant pollutants for the test vehicles include nitrogen oxides (NO_x), particulate matter (PM), carbon monoxide (CO), Carbon dioxide (CO₂)⁶, and non-methane hydrocarbon (NMHC).

- <u>DF</u> is a factor that represents the increase in emissions over the life of a vehicle as a result of engine and emission control device performance deterioration. Specifically, this is the increase between certification testing, when the aftertreatment system has only been used for approximately 4,000 miles, and the end of the useful life of the aftertreatment system. Engine manufacturers must add the DF to the measured emissions when determining the official certification level.
- <u>Upward EAF</u> is an additional factor added to the measured emissions to determine certification levels when regeneration does not occur during the testing. This factor accounts for excess emissions during DPF regeneration and only applies to diesel engines equipped with DPFs.⁷
- <u>Certification level</u> is the measured emissions after DFs and EAFs are applied to the measured emissions for certifications. The certification level must be less than the certified standard.
- <u>Certified standard</u> is the applicable standard under 40 CFR Part 86 that the certification level must meet.

Table 2. Certification Emission Levels and Standards for Engine Family CFMXD06.761A (6.7 Liter Ford Powerstroke)

Useful Life (miles)	Test	Constituent	Emission Result (g/mi) ^a	Additive DF (g/mi) ^b	Upward EAF (g/mi) ^c	Certification Level (g/mi) ^d	Standard (g/mi) ^e
		CO	0.35000	0.2100	0.01000	0.6	7.3
		HC-NM	0.03280	0.0192	0.00110	0.053	0.195
120,000	FTP	НСНО	0.00420	0	0.00010	0.004	0.032
		NOX	0.12000	0.0500	0.01000	0.2	0.2
		PM	0.00500	0.0050	-0.00010	0.01	0.02

Source: All data are available on EPA's website at: http://www.epa.gov/otaq/crttst.htm.

b – This factor represents the increase in emissions over the life of a vehicle as a result of engine and emission control device performance deterioration. Specifically, this is the increase between certification testing, when the aftertreatment system and engine have only been used for approximately 4,000 miles, and the end of the useful life.

d- This is the emissions levels for this engine family certified by Ford at the end of the useful life after applying appropriate DF and EAFs to the raw emission test results at 4,000 miles.

_

a – This is the measured emissions test result from the emissions test.

c – This factor is added to the measured emissions test result when determining certification levels when DPF regeneration does not occur during the testing. This factor accounts for excess emissions during DPF regeneration and only applies to diesel engines equipped with DPFs.

⁶ CO₂ was also measured but is not a regulated pollutant for the F-250 and, therefore, excluded from Table 2.

⁷ When regeneration does not occur during the testing, manufacturers must add upward EAFs to account for the excess emissions during regeneration. Downward EAFs are also certified for each engine family which are added when regeneration does occur. Table 2 only shows upward EAFs because ERG did not consider a test in which a regeneration occurs to be valid due to the inability to replicate two tests in which a regeneration occurs. More information on engine adjustment factors is available online at: http://www.epa.gov/otaq/highway-diesel/workshop/420f04022.pdf.

e – Emissions standards this engine family is required to meet at the end of the useful life after applying appropriate DF and EAFs to the raw emission test results at 4,000 miles.

Table 3. Certification Emission Levels and Standards for Engine Family DFMXT03.54DX (3.5 Liter Ford EcoBoost)

Useful Life(miles)	Test	Pollutant	Emission Result (g/mi) ^a	Additive DF (g/mi) ^b	Certification Level (g/mi) ^c	Standard (g/mi) ^d
	US06	CO	0.66000	0	0.7000	11.8
4,000	0300	HC-NM+NOX	0.04300	0	0.0400	0.60
4,000	SC03	CO	0.43000	0	0.4000	4.0
	3003	HC-NM+NOX	0.04800	0	0.0500	0.44
	HWFE	NOX	0.00300	0.004000	0.0100	0.07
50,000		CO	0.68000	0.250000	0.9000	3.4
30,000	FTP	NMOG	0.02620	0.010000	0.0360	0.075
		NOX	0.00800	0.004000	0.0100	0.05
	HWFE	CREE	385.00000	1.100000	386.0000	999.99
		NOX	0.00280	0.011000	0.0140	0.090
		OPT-CREE	388.00000	1.700000	390.0000	999.99
	US06	CO	0.66000	0.630000	1.3000	19.3
120,000	SC03	CO	0.43000	0.630000	1.1000	6.4
120,000		CO	0.68000	0.630000	1.3000	4.2
		CREE	524.00000	1.100000	525.0000	999.99
	FTP	NMOG	0.02620	0.025100	0.0510	0.090
		NOX	0.00800	0.011000	0.0200	0.07
		OPT-CREE	527.00000	1.700000	529.0000	999.99

Source: All data are available on EPA's website at: http://www.epa.gov/otaq/crttst.htm.

B. <u>Testing Procedures</u>

The following subsections describe the test procedures EPA and ERG followed during emissions testing:

- Section III.B.1 describes tuner calibration installation;
- Section III.B.2 describes obtaining OBD data before and after each test;
- Section III.B.3 describes obtaining live engine data during each test; and
- Section III.B.4 describes test cycle selection and test procedures.

EPA completed one baseline and one tuner test for each test vehicle, as summarized in Table 4. As shown, the Bully Dog 40420 tuner was tested on two separate occasions, referred to as "Bully Dog – Void" and "Bully Dog – Valid" in the test calibration column. This is because after the first Bully Dog test on 28 October 2015, ERG analyzed the live engine data and determined that an active DPF

a – This is the measured emissions test result from the emissions test.

b – This factor represents the increase in emissions over the life of a vehicle as a result of engine and emission control device performance deterioration. Specifically, this is the increase between certification testing, when the aftertreatment system and engine have only been used for approximately 4,000 miles, and the end of the useful life.

c – This is the certified emissions levels for this engine family at the end of the useful life after adding appropriate DF and EAFs to the raw emission test results at 4,000 miles.

d-Emissions standards this engine family is required to meet at the end of the useful life after applying appropriate DF and EAFs to the raw emission test results at 4,000 miles.

regeneration occurred⁸; therefore, EPA and ERG refer to all of the tests performed on 28 October 2015 as void and do not compare the results to baseline. Section IV.B, where results from ERG's analysis of live data is summarized, provides additional details about the regeneration that occurred. As a result, EPA performed a second test with the Bully Dog 40420 tuner installed on 10 November 2015, in which a regeneration did not occur, referred to as the "Bully Dog – Valid" calibration. ERG was not present for this test on 10 November 2015.

To prevent a DPF regeneration from occurring a second time, ERG, with the assistance of NVFEL, forced a manual DPF regeneration on the F-250 test vehicle on 3 November 2015. The F-250 test vehicle did not have a manual DPF regeneration command button in the cab but the Bully Dog 40420 tuner provided the capability to do the manual DPF regeneration. Photographs [23] through [27] shows the DPF regeneration menu option on the Bully Dog 40420 tuner before, during, and after the regeneration. There were two types of regenerations that could be forced using the tuner: stationary or mobile. The EPA NVFEL mounted the F-250 test vehicle to the dynamometer and ERG forced a stationary regeneration.

		Test Dates	
Vehicle – Engine	Test Calibration	Prep Date ^a	Test Date ^b
F-250 – 6.7 Powerstroke	Stock (i.e., baseline)	10/27/2015	10/28/2015
F-250 – 6.7 Powerstroke	Bully Dog – Void ^c	10/28/2015	10/29/2015
F-250 – 6.7 Powerstroke	Bully Dog - Valid	11/9/2015	11/10/2015
F-150 – 3.5 Liter EcoBoost	Stock (i.e., baseline)	11/2/2015	11/3/2015
F-150 – 3.5 Liter EcoBoost	SCT 7015	11/5/2015	11/6/2015

Table 4. Chassis Dynamometer Test Matrix for Testing

The following describes the general procedure the EPA and ERG followed for each tuner calibration and test. Table 16 in Appendix B provides a more detailed order of test procedures.

- 1. ERG downloaded the calibration identifications (Cal ID), calibration verification numbers (CVNs), the status of the malfunction indicator light (MIL) and diagnostic trouble codes (DTC) from the ECM with the existing calibration installed. See Section III.B.2 for more information on what these parameters are and how ERG obtained them.
- 2. ERG used the tuner to install the calibration to be tested. See Section III.B.1 for the detailed procedures ERG followed for each tuner and calibration installation. ERG started the engine momentarily to allow the ECM to detect DTCs and to recalculate the CVN.
- 3. ERG obtained the new Cal ID, CVN, MIL status, and DTCs from the ECM with the calibration installed.
- 4. ERG connected the data logger to the vehicle to obtain live engine data parameters over time during testing. See Section III.B.3 for detailed procedures related to the data logger.
- 5. EPA performed the test procedures described in Section III.B.4.b. See Section III.B.4.a for more details on the underlying test cycles included in these test procedures.

a – The prep date is the date EPA ran the test vehicle on the prep cycle described in Section III.B, which must occur between 12 and 36 hours before the start of the FTP test.

b- The test date is the date EPA ran the four tests described in Section III.B.4 which includes the FTP, HWFE, US06, and SC03 tests.

c – ERG determined that an active DPF regeneration occurred during this test. As a result, EPA and ERG refer to this test as void and do not compare the results to baseline.

⁸ A DPF regeneration s a process in which the soot (i.e., PM) collected by the DPF is burned off at high temperature to leave only a tiny ash residue. Active regeneration is one method that is used when there is not sufficient heat in the exhaust to convert all the carbon being collected. During active regeneration, exhaust temperatures are raised by injecting a small amount of fuel upstream of the DPF.

1. Tuner Installation

As described above, the SCT and Bully Dog tuners all come with preloaded tunes manufactured by SCT and Bully Dog, respectively. The following subsections provide specifics regarding installation options ERG selected for testing.

a. Bully Dog 40420 Tuner Installation

After the Bully Dog 40420 tuner is turned on, a menu appears with the following options: change vehicle, install download, gauge setup, diagnostics, performance testing, driving coach setup, special functions, user options, show settings, vehicle info, uninstall download (see Appendix A Photographs [28] and [29]). To install a new calibration, ERG selected the "install download" menu option shown in Photograph [30]. Table 6 shows the Bully Dog 40420 tuner installation prompts in sequential order and indicates what ERG selected for testing. Photographs [34] through [39] show screenshots for each prompt during tuner installation. Photographs [40] and [41] show the device settings on the tuner after the tune installation completed, which shows the tuner as "installed".

During Step #1 in Table 6, ERG first attempted to select "'11-'12 6.7L Powerstroke" but received the "Error 222 – Part Number Not Supported. Update Unit and Try Again. Contact Tech Support if problem continues" prompt shown in Photograph [31]. ERG immediately hooked the tuner to a laptop computer and ran the update software that can be downloaded from Bully Dog's website. Photograph [32] and [33] show screenshots of the software update on ERG's laptop computer. ERG reattempted the installation process but received the same error message shown in Photograph [31]. EPA MSEB immediately contacted Ford by telephone, who stated that the stock engine calibration on the test vehicle was an updated version released in 2015 for MY 2012 vehicles. ERG then attempted to install the "'13-'15 Ford 6.7 Powerstroke" application and was successful.

Table 5. Installation Prompts for the Bully Dog 40420 Tuner on 2012 MY F-250 with a 6.7 Liter Powerstroke Diesel Engine

Step #	Prompt	Input Options	Option Selected for Testing	Photograph #
1	Vehicle Selection	 '03-'07 6.0L Powerstroke '08-'10 6.4L Powerstroke '11-'12 6.7L Powerstroke '13-'15 6.7L Powerstroke^a 	'13-'15 6.7 Powerstroke ^b	34
2	Selected Vehicle – please verify vehicle type. Installing on: '13-'15 Ford 6.7 Powerstroke. If this is correct press 'Yes'	• Yes • No	Yes	35
3	Install download	Pre-load tune	Pre-load tune	36
4	Do you want to remove the speed limiter or leave the stock limiter?	• Removed • Stock	Stock	37
5	Is your truck a cab and chassis?	• Yes • No	No	38

a – Other input options were shown in these prompt for Dodge and General Motors (GM) vehicle applications. b – Note that Photograph [40] shows the tuner "installed" on a "13-'15 Ford 6.7 Powerstroke" application but the F-250 test vehicle is a 2012 MY. See explanation in introductory text above Table 5.

Photograph [41], which is a continuation of the device settings that were installed, shows that all defuel options were turned off prior to testing. The Bully Dog 40420 tuner includes defueling options that presumably reduce the tuner settings if certain conditions are met. These conditions are set by the user

when turning on defueling options (e.g., if engine coolant temperature increases above a designated value). ERG ensured that all defuel options were off for testing as shown in Photograph [41].

Photograph [42] shows the main screen on the tuner after the installation process was completed. As shown in the bottom right, the "extreme" on-the-fly tune was selected. The other three on-the-fly settings were "stock", "tow", and "performance". To confirm that the most recent on-the-fly setting remained when the tuner was unplugged and then plugged back in, ERG called Bully Dog technical support on 28 October 2015. ERG also confirmed this by unplugging the tuner from the vehicle with the "extreme" setting selected and then plugging the tuner back in and observing the "extreme" tune was still selected.

b. SCT 7015 Tuner Calibration Installation

After the SCT 7015 tuner is turned on, a menu appears with the following options: program vehicle, gauges/data log, vehicle functions, vehicle info, device info, device settings (see Photograph [43]). ERG first documented the device info, shown in Photographs [44] and [45], followed by the vehicle info menu, shown in Photograph [46]. To install a new calibration, ERG selected the "program vehicle" menu option shown in Photograph [43]. When ERG attempted to install an SCT calibration onto the test vehicle on 3 November 2015, the SCT 7015 tuner recognized the 3.5 Liter EcoBoost engine as shown in Photograph [48]). However, the next screen stated "General error# 110AE, additional update required. Please run auto-update" (see Photograph [49]). ERG immediately hooked the SCT 7015 tuner to a laptop computer and ran the auto-update software that was downloaded from SCT's website. Photographs [50] and [51] show screenshots of the software update on ERG's laptop computer. After this update, the SCT no longer reported this error and ERG was able to continue with the installation process.

Table 6 shows the SCT 7015 installation prompts in sequential order and indicates what ERG selected for testing. Photographs [52] through [64] show screenshots for each prompt during the Ford testing installation. Photograph [65] shows the device settings on the SCT 7015 tuner after the tune installation completed, which shows the tuner as "married" and with a "preloaded tune -59 - KGCTAA6".

Table 6. Installation Prompts for the SCT 7015 Tuner on MY 2013 F-150 with a 3.5 Liter EcoBoost Gasoline Engine

Step #	Prompt	Input Options	Option Selected for Testing	Photograph #
1	Fuel Octane	 87 Octane 91 Octane 93 Octane 93 Octane 93 Octane tow 	93 Octane	52
2	Intake air box	Stock air box Airaid	Stock air box	53
6	Global spark	• 0 degrees to -14 degrees	0 degrees	54
3	Axle Ratio	(no Photograph take)	Stock Value	52
4	Tires Revs/Mile	(no Photograph take)	Stock Value	52
5	Speed limit	(no Photograph taken)	Stock Value (100 mph)	52

⁹ However, as shown in Photograph [63], one more error message appeared during the install which was determined to be low battery voltage. A battery charger was connected to the vehicle for several minutes to remove this error.

Table 6. Installation Prompts for the SCT 7015 Tuner on MY 2013 F-150 with a 3.5 Liter EcoBoost Gasoline Engine

Step #	Prompt	Input Options	Option Selected for Testing	Photograph #
6	Rev limit neutral	(no Photograph taken)	Stock value (4200 PM)	52
8	Idle speed drive	• 580 to 1180 rpm	Stock Value (580 rpm)	58
8	Idle speed neutral	• 625 to 1225 rpm	Stock Value (625 rpm)	58
9	Wide open throttle (WOT) shift points	• -7 to +7 mph	+ 7 mph	55
10	Adjust tire pressure monitor system cold PSI setting?	• No • 0 through 45 psi	No	57

2. OBD Scan Tool Data Procedure

After each installation of each new calibration using the tuner during emissions testing at Ford, ERG immediately removed the tuner, connected an OBD II scan tool¹⁰ to the OBD II data link connector (DLC) on the test vehicle, and obtained DTCs, status of the MIL, Cal ID, and CVN. ERG obtained this information during the testing process:

- Before installing a new calibration using the tuner;
- After installing a new calibration using the tuner and before the emissions test;
- After completing each emission test; and
- After returning the ECM calibration to stock after each test.

The following describes each one of the parameters ERG recorded during testing using the scan tool. Section IV.A summarizes the observations.

- Cal ID The Cal ID represents the software version, which includes the engine data maps. A new calibration installation may or may not result in a new Cal ID, depending on the tuner.
- CVN The CVN is the result of a 'check-sum' calculation performed by the OBD system using the engine data maps as inputs. If the data values have not been changed or corrupted, the CVN will always provide the same sum for a given Cal ID. If the ECM has been corrupted or any calibration values have been modified, the CVN calculation will generate an incorrect 'sum'. ERG used this as the ultimate indicator that the tuner installed a new calibration between each test.
- DTCs DTCs are diagnostic trouble codes that indicate a fault has been detected in one of the engine or emission control systems and indicates the system that had the fault.
- MIL The malfunction indicator light, also known as the check engine light, is a symbol located near the odometer. The MIL indicator is amber (yellow) in color and should be illuminated for the first five seconds after the ignition key is turned on to show that the MIL light is working

¹⁰ ERG used two different OBD II scan tools during testing: an AutoXray [®] 4000 and a Nexiq Pocket IQ.

¹¹ SAE J1979 states: Calibrations developed by any entity other than the vehicle manufacturer will generally have a calibration verification number that is different from that calculated based on the calibration developed by the vehicle manufacturer.

properly. After startup, the light is only illuminated when a malfunction is detected following the detection of confirmed DTCs. The MIL activates when monitored operating parameters indicate an engine or emission control component failure has occurred that has the potential to cause the vehicle's emissions to exceed the certification standard by a certain threshold.

3. Live Engine Data Logging Procedure and Analysis

During testing, the EPA and ERG logged live engine operational data. After testing, ERG used the data to evaluate operating parameters that may affect emissions such as fuel injection timing, EGR flow, fueling rates, air-to-fuel ratio (AFR), manifold pressure, DPF loading, and SCR system status. The exact parameters analyzed varied by vehicle and are listed in Appendices F and G. Specific details about the data loggers used and logging procedures are described in the following two subsections.

To analyze the data, ERG calculated percentiles values (i.e., 1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, and 99th percentiles) for each parameter over identical tests using Microsoft Excel. Section IV.B provides the results of ERG's analysis. For all calculations, ERG excluded all data points logged before the vehicle speed increased from zero at the beginning of the test and all data points after the engine RPM changed to zero at the end of the test as the engine was turned off. By eliminating the data before the vehicle moved and after the vehicle stopped, ERG was able to compare data sets on an equivalent basis (e.g., same length of time and speed trace).

a. F-250 – 6.7 Liter Ford Powerstroke

For all F-250 testing, the EPA and ERG used a HEM Data Dawn Mini LoggerTM data logger configured to acquire enhanced (manufacturer-specific) engine data. ERG logged the live data by connecting the logger to the OBD II DLC just prior to baseline testing and after ERG installed the new calibration and removed the tuner from the vehicle (prior to "tuner installed" testing). The list of parameters recorded for the F-250 are contained in Appendix F, along with ERG's analysis of the data. Some of the logged parameters were manufacturer-specific. Results of live data analysis are summarized in Section IV.B. The data logger activates when the vehicle engine speed (i.e., RPM) increases from zero after the engine is turned on. The data logger was set to record data at a rate of 10 hertz or 10 data points per second. The EPA NVFEL converted the data into comma separated value format and provided ERG all of the recorded data after testing.

b. F-150 – 3.5 Liter Ford EcoBoost

For all F-150 testing, the EPA and ERG used an Auterra Dyno-Scan (version 10.0.1) data logger. ERG logged the live data by connecting the logger to the OBD II DLC and then connected a laptop computer to the data logger. During operation, the data was logged directly onto the laptop computer. Some of the logged parameters were manufacturer-specific. The list of parameters recorded for the F-150 are contained in Appendix G, along with ERG's analysis of the data. Results of live data analysis are summarized in Section IV.B. Unlike the HEM Data logger, the Auterra logger did not allow the frequency rate for data recording to be manually set. The data logger logged at an approximate rate of 1 hertz or 1 data point per second.

4. Test Cycle Selection and Test Procedure

EPA's goal was to evaluate if the modified calibrations installed by the tuners cause the vehicle to exceed exhaust emission standards for which the test vehicles were certified to meet. Secondly, EPA's goal for this testing was to evaluate the relative change in emissions from the test vehicle when using modified calibration using a tuner compared to the stock calibration (i.e., baseline). The following subsections describe the test cycles performed for the purpose of meeting these goals and the specific procedures performed at the EPA NVFEL. Results from emissions tests are described in Section IV.

a. Test Cycle Descriptions

Table 7 describes the preparation (prep), FTP-75, HWFE, US06, SC03 test cycles in terms of distance, time, and number of phases within a single test cycle. All information provided in this section, including the figures provided below Table 7, are publicly available on EPA's website. 12

- Prep—As required by 40 CFR Part 86, EPA NVFEL ran a prep cycle the day before each FTP-75 test. The prep cycle is the Urban Dynamometer Driving Schedule (FTP-72). It is designed to mirror city driving conditions simulating frequent starts and stops. It is described in 40 CFR Part 86 Appendix I (a) and contains two phases (505 second, 3.6 mile Phase 1 and an 867 second, 3.9 mile Phase 2). Figure 1 shows the speed trace of a single prep cycle.
- <u>FTP-75</u>: The FTP-75 is another variation of the EPA Urban Dynamometer Driving Schedule (FTP-72) and is the primary test cycle used for certification. It is derived from the Urban Dynamometer Driving Schedule (FTP-72) by adding a third 505 second phase to the test cycle following a 10 minute engine-off soak. The third phase is identical to the first phase of FTP-72. The FTP-75 is also described in 40 CFR Part 86 Appendix I (a). Prior to a the FTP-75 test, the vehicle must go through a 12 to 36 hour "cold soak" period¹³ after the prep cycle during which the engine cannot be started. Figure 2 shows the speed trace of a single FTP-75 test cycle.
- <u>HWFE</u>: The HWFE is used by EPA to determine highway fuel economy for light duty vehicles. It consists of a single phase of non-stop highway driving. Figure 3 shows the speed trace of a single HWFE test cycle which is available in 40 CFR Part 600 Appendix I.
- <u>US06</u>: The US06 test cycle, also known as the Supplemental Federal Test Procedure (SFTP), addresses the shortcomings of FTP-72. It captures aggressive, high speed and/or high acceleration driving behavior, rapid speed fluctuations, and driving behavior following startup. Figure 4 shows the speed trace of a single US06 test cycle which is available in 40 CFR Part 86 Appendix I (g).
- <u>SC03</u>: The SC03 is another variation of the SFTP but requires the use of the air conditioning (A/C) system during the test and at a lab temperature of 95°F (35°C). For this testing, EPA was unable to incorporate the lab temperature of 95°F. Figure 5 shows the speed trace of a single SC03 test cycle which is available in 40 CFR Part 86 Appendix I (h).

Table 7. Test Cycle Descriptions

		Test Cycle Breakdown				
Test Cycle	Description	Phase #	Distance (miles)	Time (seconds)		
		Phase 1	3.6	505		
Prep	Normal city driving	Phase 2	3.9	867		
		Total test cycle	7.5	1,372		
	Normal city driving	Phase 1	3.6	505		
FTP-75		Phase 2	3.9	867		
F1P-/5		Phase 3	3.6	505		
		Total test cycle	11.1	1,877		
HWFE	Highway driving	Only 1 phase	10.26	765		
US06	Hard city and highway driving	Only 1 phase	8.0	600		
SC03	Hard city	Phase 1	3.6	596		

_

¹² Available online at: http://www.epa.gov/nvfel/testing/dynamometer.htm.

¹³ The room temperature during the cold soak period must be between 68 and 86 degrees Fahrenheit (40 CFR 86.130).

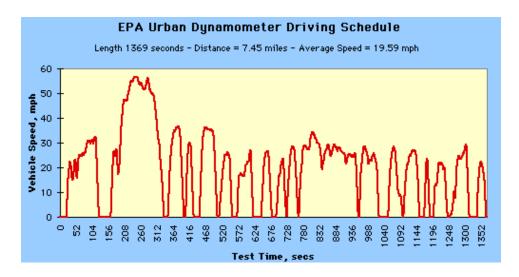


Figure 1. One Prep Cycle Speed Trace (i.e., FTP-72)

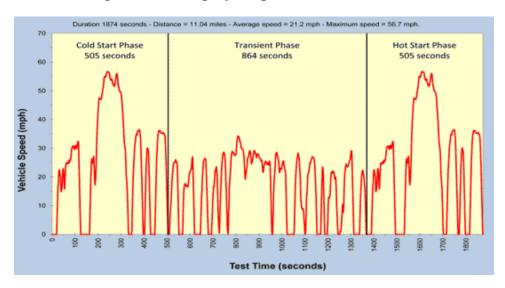


Figure 2. One FTP-75 Test Cycle Speed Trace

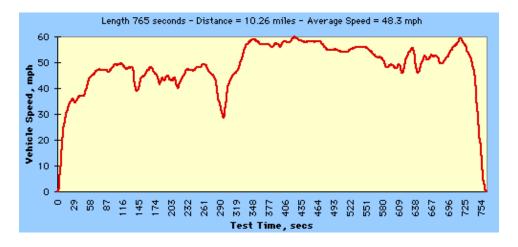


Figure 3. HWFE Test Cycle Speed Trace

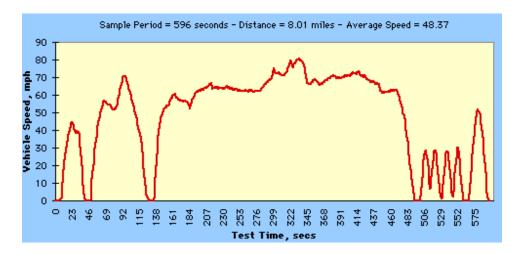


Figure 4. US06 Test Cycle Speed Trace



Figure 5. SC03 Test Cycle Speed Trace

b. Test Procedures at NVFEL

The procedures for each FTP, HWFE, US06, SC03 test are listed below. Asterisks indicate results ERG used for evaluating how each calibration affected engine operation in Section IV.B and emissions in Section IV.C. EPA used the same dynamometer calibration settings for each test which are provided in Section III.C. For each calibration tested on the FTP, EPA completed the following procedure. Asterisks (*) mark specific test runs that result in emissions test results for the purpose of evaluating the tuners.

- 1. Performed one prep (FTP-72) test cycle (engine could be cold, warm, or hot).
- 2. Allowed a 12 to 36 hour soak period.
- 3. Performed the FTP75 test cycle:
 - a. Performed Phase 1 of the FTP test cycle (cold start).*
 - b. Performed Phase 2 of the FTP test cycle (stabilization phase).*
 - c. Allowed a 10 minute engine off period.
 - d. Performed Phase 3 of the FTP test cycle (hot start).*

ERG used the weighted bag results¹⁴ for all three phases of the FTP75 test cycle as the valid result for comparing results in Section IV.C. This ensures that the vehicle's engine and emission control devices were at the same operating temperature at the beginning of each second and valid test cycle.

HWFE Tests

For each calibration tested on the HWFE, EPA completed the following procedure:

- 1. Performed one HWFE test cycle.
- 2. Performed a second consecutive HWFE test cycle immediately after Step 1. This inherently included a short engine-on idle period following Step 1, as specified in the HWFE speed trace at the end and beginning of each HWFE test cycle.*

ERG only used the result from this second consecutive HWFE cycle (Step 2 above) for evaluating how each calibration affected emissions in Section IV. This ensures that the vehicle's engine and emission control devices were at the same operating temperature at the beginning of each second and valid test cycle.

US06 Tests

For each calibration tested on the US06, EPA completed the following procedure:

- 1. Performed one US06 test cycle.
- 2. Performed a second consecutive US06 test cycle immediately after Step 1. This inherently included a short engine-on idle period following Step 1, as specified in the US06 speed trace at the end and beginning of each US06 test cycle.*

ERG only used the result from this second consecutive US06 cycle (Step 2 above) for evaluating how each calibration affected emissions in Section IV. This ensures that the vehicle's engine and emission control devices were at the same operating temperature at the beginning of each second and valid test cycle.

SC03 Tests

For each calibration tested on the SC03, EPA completed the following procedure:

- 1. Performed one SC03 test cycle.
- 2. Allowed a 10 minute engine off period.
- 3. Performed a second consecutive SC03 test cycle.*

ERG only used the result from this second consecutive SC03 cycle (Step 2 above) for evaluating how each calibration affected emissions in Section IV. This ensures that the vehicle's engine and emission control devices were at the same operating temperature at the beginning of each second and valid test cycle.

C. Quality Assurance and Other Documentation

The EPA NVFEL followed the quality assurance and dynamometers testing procedures outlined in a quality assurance project plan (QAPP) titled *OECA Test Program at NVFEL: Aftermarket Tuning Effect on Emissions - QAPP (October 2015)*. The QAPP incorporates by reference the procedures set forth in

¹⁴ The weighted bag results are calculated by the EPA NVFEL and reported on the official report.

the EPA NVFEL's *QSP-514 Vehicle Testing Practices, Version 7, (04/28/2015).* The EPA NVFEL is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.¹⁵

ERG performed additional quality control checks after receiving all results from the EPA NVFEL. These checks are summarized in Table 8 and Table 9 for the F-250 and F-150, respectively. Each test can be identified in the raw emissions results files contained in Appendix D using the test identifier assigned by the EPA NVFEL. ERG verified that the same inertia weight and set coefficients were used for each test.

Table 8. 2012 MY F-250 Test Documentation

				Beginning	Dynamometer Calibration Settings ^b				Soak
	nd Vehicle bration	EPA NVFEL Test ID ^a	Test Date	Odometer (mi.)	Inertia (lbs.)	EPA Set Co A	EPA Set Co B	EPA Set Co C	Period (hr.) ^c
FTP	Baseline	2016-0026-006	10/28/2015	52,832	9,500	-16.94	-0.5339	0.0496	20.8
HWFE	Baseline	2016-0026-003	10/28/2015	52,843	9,500	-16.94	-0.5339	0.0496	N/A
US06	Baseline	2016-0026-004	10/28/2015	52,863	9,500	-16.94	-0.5339	0.0496	N/A
SC03	Baseline	2016-0026-005	10/28/2015	52,879	9,500	-16.94	-0.5339	0.0496	N/A
FTP	BD-VOID	2016-0026-008	10/29/2015	52,895	9,500	-16.94	-0.5339	0.0496	14
HWFE	BD-VOID	2016-0026-009	10/29/2015	52,906	9,500	-16.94	-0.5339	0.0496	N/A
US06	BD-VOID	2016-0026-010	10/29/2015	52,926	9,500	-16.94	-0.5339	0.0496	N/A
SC03	BD-VOID	2016-0026-011	10/29/2015	52,940	9,500	-16.94	-0.5339	0.0496	N/A
FTP	BD-Valid	2016-0026-016	11/10/2015	52,973	9,500	-16.94	-0.5339	0.0496	17.9
HWFE	BD-Valid	2016-0026-018	11/10/2015	52,984	9,500	-16.94	-0.5339	0.0496	N/A
US06	BD-Valid	2016-0026-019	11/10/2015	53,004	9,500	-16.94	-0.5339	0.0496	N/A
SC03	BD-Valid	2016-0026-020	11/10/2015	53,019	9,500	-16.94	-0.5339	0.0496	N/A

a – This is the test identifier associated with the raw emissions reports assigned by the EPA NVFEL.

Table 9. 2013 MY F-150 Test Documentation

				Beginning	Dynamometer Calibration Settings ^b			Settings ^b	Soak
Test and Vehicle Calibration		EPA NVFEL Test ID ^a	Test Date	Odometer (mi.)	Inertia (lbs.)	EPA Set Co A	EPA Set Co B	EPA Set Co C	Period (hr.) ^c
FTP	Baseline	2016-0030-002	11/3/2015	47,036	6,000	-12.59	-0.0583	0.03829	16.5
HWFE	Baseline	2016-0030-003	11/3/2015	47,047	6,000	-12.59	-0.0583	0.03829	N/A
US06	Baseline	2016-0030-004	11/3/2015	47,068	6,000	-12.59	-0.0583	0.03829	N/A
SC03	Baseline	2016-0030-005	11/3/2015	47,084	6,000	-12.59	-0.0583	0.03829	N/A
FTP	SCT 7015	2016-0030-006	11/6/2015	47,107	6,000	-12.59	-0.0583	0.03829	16.0
HWFE	SCT 7015	2016-0030-007	11/6/2015	47,119	6,000	-12.59	-0.0583	0.03829	N/A
US06	SCT 7015	2016-0030-008	11/6/2015	47,140	6,000	-12.59	-0.0583	0.03829	N/A
SC03	SCT 7015	2016-0030-009	11/6/2015	47,156	6,000	-12.59	-0.0583	0.03829	N/A
FTP	Baseline	2016-0030-002	11/3/2015	47,036	6,000	-12.59	-0.0583	0.03829	16.5
HWFE	Baseline	2016-0030-003	11/3/2015	47,047	6,000	-12.59	-0.0583	0.03829	N/A

¹⁵ The EPA's NVFEL accreditation was valid from 7 April 2015 through 30 April 2016. See http://www3.epa.gov/nvfel/documents/cert-epa-nvfel-isoiec-17025-scope-2015-04.pdf

_

b – These is dynamometer calibration settings from the raw emissions reports in Appendix D.

c – This is the length of the cold soak period. It starts when the engine was turned off at the end of the prep cycle and ends when the engine is started for the FTP test.

Table 9. 2013 MY F-150 Test Documentation

						Beginning	Dynamometer Calibration Settings ^b				Soak
Test and Vehicle Calibration		EPA NVFEL Test ID ^a	Test Date	Odometer (mi.)	Inertia (lbs.)	EPA Set Co A	EPA Set Co B	EPA Set Co C	Period (hr.) ^c		
US06	Baseline	2016-0030-004	11/3/2015	47,068	6,000	-12.59	-0.0583	0.03829	N/A		

- a This is the test identifier associated with the raw emissions reports assigned by EPA NVFEL.
- b This is dynamometer calibration information from the raw emissions reports in Appendix D.
- c This is the length of the cold soak period. It starts when the engine was turned off at the end of the prep cycle and ends when the engine is started for the FTP test.

As part of EPA's NVFEL standard operating procedure, derivation tests are run with each vehicle on the dynamometer in order to determine the correct set coefficients. This process calibrates the dynamometer to request the proper road load from the vehicle being tested. In order to run the derivation tests, values known as "manufacturer target coefficients" must be used as inputs which were reported to the EPA NVFEL by Ford prior to testing and are shown in Table 10 below along with the resulting set coefficients (also shown in Table 8 and Table 9 above).

Table 10. Manufacture Target Coefficients and EPA Set Coefficients

		Test Vehicle				
Parameter	•	F-250	F-150			
Manufacturer Target	Target A	64.98	63.52			
Coefficients Reported by Ford to	efficients Reported by Ford to the EPA NVFEL Target B 1.5436	0.5449				
the EPA NVFEL	Target C	0.03721	0.03725			
Manufacturer Target	Target A	64.98	63.52			
Coefficients Used by the EPA NVFEL	Target B	1.3544ª	0.5449			
NVFEL	Target C	0.03721	0.03725			
EPA Set Coefficients determined	Set Coefficient A	-16.94	-12.59			
by the EPA NVFEL via Derivation Runs	Set Coefficient B	-0.5339	-0.0583			
Derivation Runs	Set Coefficient C	0.0496	0.03829			

a – This coefficient was incorrectly entered by the EPA NVFEL before the derivation run for the F-250. The EPA NVFEL determined that this error resulted in 2.30 to 4.24 percent less road load demanded by the dynamometer from the F-250, depending on the speed, compared to if the correct coefficient was used.

It is important to note that for the F-250 test, the manufacture target coefficient was incorrectly entered for the derivation run on 26 October 2015 as 1.3544; the correct value was 1.5436. As a result, the set coefficient B determined by the EPA NVFEL for the F-250 was also incorrect. However, for the purpose of this testing, EPA used the same EPA set coefficients for all remaining tests because the error was not identified until after the first valid Bully Dog test was completed for the F-250. Further, the EPA NVFEL determined this error resulted in 2.30 to 4.24 percent less road load demanded by the dynamometer from the F-250, depending on the speed, compared to if the correct coefficient had been used. Because less road load does not adversely affect (increase) emissions, the EPA MSEB and ERG decided the selected coefficients used were sufficiently suitable for the purpose of this testing. Appendix E provides the documentation the EPA MSEB and ERG received from the EPA NVFEL regarding the difference in road load.

IV. EMISSIONS TESTING RESULTS

The following subsections summarize the results and observations from the emissions testing at the EPA NVFEL including OBD data observations, analysis of live engine data, and measured emissions.

- Section IV.A summarizes observations of general diagnostic information reported through the OBD before and after tuner installation.
- Section IV.B summarizes ERG's analysis of live engine data obtained during the testing.
- Section IV.C summarizes the measured emissions results.

A. OBD Scan Tool Data Observations

As described in Section III.B.2, before and after installation of each tuner calibration, ERG immediately removed the tuner, connected an OBD II scan tool to the OBD II DLC on the test vehicle, and obtained OBD data. ERG observed DTCs, the status of the MIL, Cal ID ¹⁶, and CVN. ¹⁷ It is important to note that when a tuner is unplugged, the most recent calibration remains installed on the ECM, along with any software modifications.

1. F-250 - 6.7 Liter Ford Powerstroke

Table 11 shows OBD data observed on the F-250 test vehicle at various stages of testing. Ford verbally confirmed the week of 26 October 2015 that the F-250 test vehicle contained the most recent production calibration ¹⁸. The observed CVN 1 changed from the stock CVN 1 value after installing the Bully Dog 40420 tuner calibration confirming that the tuner modified the stock calibration in some way. The tuner also altered the Cal ID 1 name when installing the modified calibration. CVN 2, CVN 3, and CVN 4¹⁹ never changed during the course of testing. After installing the Bully Dog 40420 tuner calibration and starting the engine, the OBD II scan tool always reported the MIL as "off" and no DTCs were present.

As shown in Table 11, the observed Cal ID 1 and CVN 1 did not match the stock value as received from Ford after returning the F-250 calibration to stock following the first and void Bully Dog test on 28 October 2015. However, when the Bully Dog 40420 tuner was reinstalled on 2 November 2015 before the valid Bully Dog test, the observed Cal ID 1 and CVN 1 values matched the observed values from the initial installation of the Bully Dog tune on 28 October 2015. This confirms that the same Bully Dog calibration was installed for both the void and valid Bully Dog test.

_

¹⁶ The Cal ID represents the software version, which includes the engine data maps.

¹⁷ The CVN is the result of a 'check-sum' calculation performed by the OBD system using the engine data maps as inputs. If the data values have not been changed or corrupted, the CVN will always provide the same sum for a given Cal ID. If the ECM has been modified or corrupted, the CVN calculation will generate an incorrect 'sum'.

¹⁸ A "production" calibration is one that can be found on vehicles sold to consumers at Ford dealerships. This excludes calibrations that OEMs may use during research and development.

¹⁹ There are multiple Cal ID because there are multiple control modules for this engine.

Table 11. OBD Scan Tool Observations During Emissions Testing on MY 2012 F-250 with a 6.7 Liter Powerstroke Diesel Engine

	Stock ^a	BD Tune (void test) ^b	Returned to Stock ^c	BD Tune (valid test) ^d
Parameter	10/28/2015	10/28/2015	10/29/2015	11/2/2015 and 11/6/2015
TCM Cal ID	Not Reported	Not Reported	Not Reported	Not Reported
TCM CVN	1426FABE	1426FABE	1426FABE	1426FABE
Cal ID 1	DDCM2A6.H32	DDBN3C3.H32	DDCL0CA.H32	DDBN3C3.H32
Cal ID 2	BC3A-14D609-BA	BC3A-14D609-BA	BC3A-14D609-BA	BC3A-14D609-BA
Cal ID 3	Not Reported ^e	Not Reported ^e	DC3A-14F553-AA	DC3A-14F553-AA
Cal ID 4	Not Reported ^e	Not Reported ^e	DC3A-14G265-AC	DC3A-14G265-AC
CVN 1	20AADB09	9F71DCDC	6A188191	9F71DCDC
CVN 2	0885FD1F	0885FD1F	0885FD1F	0885FD1F
CVN 3	000009AE	000009AE	000009AE	000009AE
CVN 4	0000CD85	0000CD85	0000CD85	0000CD85
MIL Status	Off	Off	Off	Off
Inactive DTCs	0	0	0	0
Active DTCs	0	0	0	0

a – OBD data observed prior to any testing.

1. F-150 – 3.5 Liter Ford EcoBoost

Table 12 shows OBD data observed on the F-150 test vehicle at various stages of testing. Ford verbally confirmed the week of 2 November 2015 that the F-150 test vehicle contained the most recent production calibration. The observed CVN changed from the stock CVN after installing the SCT 7015 tuner calibration, confirming that the tuner modified the stock calibration maps in some way. The tuner did not alter the Cal ID name when installing a modified calibration. After installing the SCT 7015 tuner calibration and starting the engine, the OBD II scan tool reported the MIL as "off" and no DTCs were present. Additionally, the observed Cal ID and CVN matched the original values after returning the ECM to stock, verifying that the SCT 7015 tuner successfully returns the ECM to its stock calibration with no trace of modification using a generic OBD scan tool.

b - OBD data observed after installing Bully Dog calibration prior to void test in which DPF regeneration occurred.

c – OBD data observed after returning ECM to stock after the void test in which DPF regeneration occurred.

d – OBD data observed after reinstalling Bully Dog calibration prior to the final and valid test in which DPF regeneration did not occur. This matched the original calibration based on observed Cal IDs and CVNs. ERG checked these values on 2 November 2015 and also on 6 November 2015. The EPA NVFEL performed the valid test on 10 November 2015.

e – The OBD scan tool used prior to 28 October 2015 was an AutoXray ® 4000, which did not report Cal ID 3 and 4 but did report CVN 3 and 4. Starting on 29 October 2015, ERG used a Nexiq Pocket IQ scan tool and was able to observe Cal ID 3 and 4.

Table 12. OBD Scan Tool Observations During Emissions Testing on MY 2013 F-150 with a 3.5 Liter EcoBoost Gasoline Engine

	Stock ^a	SCT 7015 Tune ^b	Returned to Stock
Parameter	11/2/2015	11/3/2015	11/6/2015
Cal ID	KGCTAA6.H32	KGCTAA6.H32	KGCTAA6.H32
CVN	7BDE06C5	E579F642	7BDE06C5
MIL Status	Off	Off	Off
Inactive DTCs	0	0	0
Active DTCs	0	0	0

a - OBD data observed prior to any testing.

B. Live Engine Data

During the testing, the EPA and ERG logged live engine operating data by connecting a data logger directly to the OBD II data link connector. ERG logged data during both baseline tests and tuner tests performed on the dynamometer and also on-road tests to identify possible changes in engine and emission control system operation. After testing, ERG analyzed the live data, focusing on parameters that might affect emissions performance if altered from the designed operating range. The data logger models used and general analysis methods are provided in Section III.B.3. The Microsoft Excel analysis files are provided in Appendix F and G and include ERG's analysis and raw data. The following two subsections summarize the results for the F-250 test vehicle with the Bully Dog 40420 tuner installed and the F-150 test vehicle with the SCT 7015 tuner installed.

1. F-250 – 6.7 Liter Ford Powerstroke

ERG observed several changes to engine and emission control device operation on the F-250 test vehicle with the Bully Dog 40420 tuner installed compared to the baseline tests with the stock calibration installed. The parameters for which ERG identified changes are listed below and are discussed in the following subsections. Relevant figures and data tables are provided in these subsections, and Appendix F contains ERG's entire data analysis for the F-250 tests including more detailed descriptions of the data parameters.

- Inferred DPF loading
- Commanded EGR
- SCR ammonia level
- Manifold absolute pressure
- Engine load
- Fuel injection timing

ERG also examined all other logged parameters for which no significant changes were identified with the Bully Dog 40420 tuner installed, including variable geometry turbo charger, fueling injection quantity, engine reference torque, and SCR adaptation factor. A complete list of parameters acquired is provided in Appendix F.

b – OBD data observed after installing the Performance SCT 7015 calibration.

c – OBD data observed after returning ECM to stock after the SCT 715 test.

The live data was also used to monitor the status of DPF regeneration. Specifically, ERG reviewed the "Diesel Particulate Filter Regeneration Status" parameter²⁰ for each test to ensure that a DPF regeneration did not occur. This parameter is set to a value of zero if no regeneration is occurring or a value of one if a regeneration is occurring. As explained in Section III.B, ERG determined that a DPF regeneration did occur during the first Bully Dog 40420 tuner test on 29 October 2015²¹. As a result, all live data and emission tests results from that test were considered void by the EPA MSEB and ERG. The EPA NVFEL performed a second Bully Dog 40420 tuner test on the F-250 test vehicle on 10 November 2015 during which ERG confirmed no DPF regeneration occurred.

a. Inferred DPF Loading

The inferred DPF loading²² parameter is the soot loading on the DPF represented as a percentage of the maximum possible soot loading (0 = clean, 100 = dirty). The EPA MSEB and ERG were unable to obtain information from SAE documents or Ford representatives about how the ECM calculates this parameter and uses it to monitor or control the DPF. However, EPA did identify useful information from certification documents for the MY 2012 6.7 liter Powerstroke engine family (CFMXD06.761A) which state that

DPF regenerations are high emission events and the frequency at which they occur must be accounted for during the engine certification process (see Section III.A).

As shown in Table 13, over the course of all tests (FTP, HWFE, US06, and SC03), the cumulative change (i.e., delta) of inferred DPF loading increased at a higher rate with the Bully Dog 40420 tuner installed compared to the stock calibration. Observations varied by test. On the FTP test, it increased nearly twice as much with the tuner installed (see Figure 6). For both the HWFE and US06 tests, the inferred DPF loading slightly increased with the Bully Dog 40420 tuner installed from the beginning of the test to the end. On the other hand, the inferred DPF loading decreased (i.e., soot was burned off) with the stock calibration over these two tests (see Figure 7). For the US06 and HWFE tests, it's plausible for the DPF loading to decrease (i.e., burn off soot), not increase (i.e., accumulate soot), as a result of higher engine load and temperatures over those tests, which might passively burn off soot. This is demonstrated by the baseline tests but not the Bully Dog tests.

DPF loading increases were greater on the baseline SC03 test than the Bully Dog SC03 test. However, the fuel economy increased by 11 percent during the Bully Dog SC03 test and the absolute load recorded with the data logger was reduced, indicating the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm this condition (i.e., A/C turned off) but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.

ERG conducted internet searches related to the Bully Dog 40420 tuner and identified several customers who have complained about DPF regeneration frequency when using the Bully Dog 40420 tuner. Appendix H provides screenshots of all examples identified. Below are examples contained in Appendix H.

I have been using a bullydog triple dog set to extreme. The EGR and DPF clogged up pretty good and the mechanic i took it to said that could be the cause...The extreme setting runs more fuel thru the system the the emissions system has time to clean up[sic].

20

²⁰ Ford parameter ID FPID-F48B

²¹ Active DPF regeneration began in phase 3 (of 3) of the FTP test and finished during the HWFE warm up test cycle. However, the effects on emissions and engine operation before and after regeneration occurred are unknown.

²² Ford enhanced parameter FPID-042C

²³ It is possible that the modifications made to other parameters by the Bully Dog 40420 tuner affected the accuracy of the DPF loading calculation.

This dealer said it was "plugged exhaust filter due to aftermarket tuner.

Dont use the tuner with the DPF still intact. This is why your DPF keeps getting plugged up...Best thing you can do is DOC, DPF delete, EGR turned off/unplugged/EGR blocker plate [sic].

Bully Dog has no tune for the LML yet. Waste of time useing a tuner without doing full deletes anyway. Your mileage will drop if anything useing a tuner with DPF intact due to the more frequent regen needed from added fuel of the tuner[sic]..

Before the tuner I was about 1 regen per tank. Now I am experiencing a regen about every 100-125 miles (about 4-5 times per tank) ... I do like the power gain. Just not to impressed with the constant regeneration cycles. I just hope it doesn't have any long term effects on the truck. The way i'm thinking about it is like this: At 100,000 miles with the tuner, the truck will have regenerated as many times as it would at 400,0000 miles without the tuner (before I was regenerating 1 time per tank on average)[sic].

Table 13. Inferred DPF Loading (Percent) for F-250 Testing with the Bully Dog 40420 Tuner

	Baseli	ne Test (i.e.,	Stock)	Bully Dog Test (Extreme setting)		
Test	Test Start Value ^a	Test End Value ^a	Delta ^b	Test Start Value ^a	Test End Value ^a	Delta ^b
FTP	83.3	87.2	4.0	15.3	23.3	8.0
HWFE	85.5	83.3	-2.3	22.7	23.3	0.6
US06	76.5	71.4	-5.1	28.4	29.5	1.1
SC03	78.2	83.3	5.1	32.2	32.9	0.6
Total ^c	83.3	83.3	0	15.3	32.9	17.6

Blue – Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure. a – The inferred DPF loading at the end of each individual test does not match the DPF loading at the beginning of the subsequent test because, as explained in Section III.B.4, each test included two consecutive test cycles but only the second test cycle is used to generate official test results.

b-A positive delta indicates the soot loading on the DPF increased over the test. A negative value indicates the soot loading on the DPF decreased over the test.

c – This is the total change in inferred DPF loading from the start of the FTP test to the end of the SC03 test.

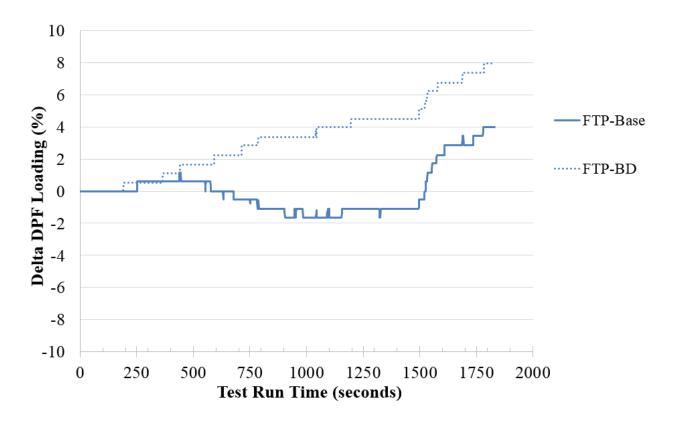


Figure 6. Inferred Delta DPF Loading (%) on the FTP Test

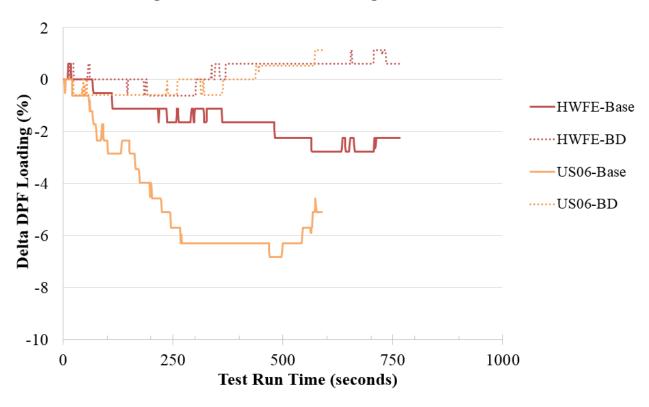


Figure 7. Inferred Delta DPF Loading (%) on the HWFE and US06 Tests

a. Commanded EGR

The EGR parameter is the commanded EGR duty cycle or position²⁴ which is directly related to the actual flow of recirculated exhaust gases through the EGR system (0 = valve closed/no flow, 100 = valve open/full flow). The live data showed that Bully Dog Extreme tuner did not disable the EGR system. Instead, there was an increase in the usage of EGR observed on all tests as shown in Figure 8. It is unknown if the tuner directly alters EGR operation or if the ECM responded to changes of other parameters made by the tuner by increasing the use of EGR. According to a document titled 6.7L Powerstroke Diesel Engine: Engine Description, Systems Overview, and Component Location,²⁵ the commanded EGR is determined by intake pressure, engine load, engine temperature, exhaust pressure, and engine speed (RPM). See Sections IV.B.1.c and IV.B.1.d, respectively, for changes observed to intake pressure and calculated engine load.

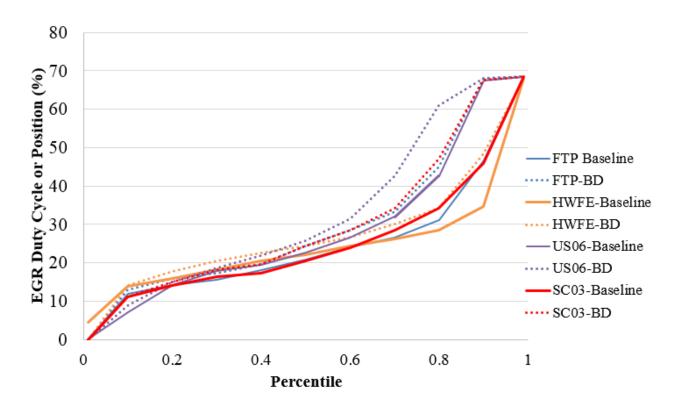


Figure 8. Actual EGR A Duty Cycle or Position (%) Data Logged from the F-250 Test Vehicle

b. SCR Ammonia Level

The live data show the Bully Dog Extreme tuner did not disable the SCR system. However, as shown in Figure 9, there was a decrease in the inferred SCR ammonia level²⁶ for all tests with the Bully Dog 40420 tuner installed with the exception of the SC03 test. However, as previously explained, fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during the Bully Dog SC03 test on 10

²⁴ Ford enhanced parameter FPID-469

²⁵ Available online at: http://www.ford-trucks.com/ford-manuals/6.7L_Diesel.pdf.

²⁶ This is Ford enhanced parameter FPID-047C. The EPA MSEB and ERG were unable to obtain information from Ford about the SCR ammonia (i.e., urea) level such as what the value represents, how the ECM calculates the value, and if the ECM uses it to monitor or control the SCR system.

November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on. Therefore, it is unknown if the lack of A/C operation on the Bully Dog SC03 test affected the inferred SCR ammonia level. It is also unknown if the accuracy of this inferred value is affected by other changes made by the tuner, if a possible increase in engine out NO_x emissions caused by the tuner depleted the SCR ammonia level, or if the tuner directly alters SCR operation by decreasing the ammonia dosing rate.

ERG also evaluated ammonia dosing rates collected by the data logger²⁷; however, it was determined that the rates are calculated averages over a 48 hour period of engine operation or the period needed for a demanded reagent consumption of at least 15 liters, whichever is longer. Since each test was much shorter than these periods, the data was not useful for comparing dosing rates with the stock calibration (i.e., baseline) to dosing rates with the Bully Dog 40420 tuner installed.

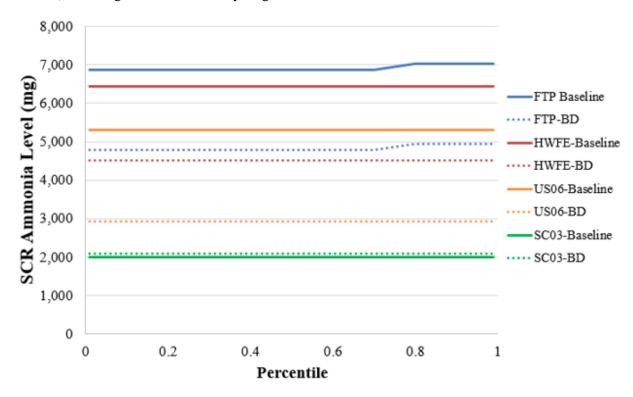


Figure 9. Inferred SCR Ammonia Level Data Logged from the F-250 Test Vehicle²⁸

c. Manifold Absolute Pressure

The manifold absolute pressure (MAP) parameter²⁹ is the absolute pressure, in kilopascals (kPa), measured directly by a sensor in the intake manifold. As shown in Figure 10, the data indicate that there is an increase in MAP with the Bully Dog 40420 tuner installed on the FTP, US06, and SC03 tests but not on the HWFE test. According to a document titled 6.7L Powerstroke Diesel Engine: Engine Description, Systems Overview, and Component Location,³⁰ the measured MAP is monitored by the ECM to control turbocharger, EGR, and DPF regeneration. Based on this information, a change in MAP may affect overall engine and/or emission control performance.

_

²⁷ Ford enhanced parameter FPID-F485

²⁸ Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.
²⁹ Ford enhanced parameter FPID-F487.

³⁰ Available online at: http://www.ford-trucks.com/ford-manuals/6.7L Diesel.pdf.

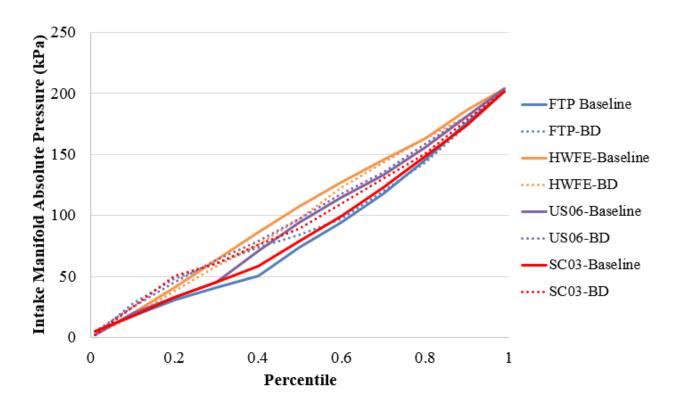


Figure 10. Manifold Absolute Pressure (kPa) Data Logged from the F-250 Test Vehicle³¹

d. Engine Load

The engine load³² parameter represents the instantaneous engine load as a percentage of total possible engine load as a function of RPM. According SAE J1979, its calculation is proportional to the instantaneous air flow divided by the maximum air flow at wide open throttle as a function of engine RPM. However, it is unknown if this methodology is in fact used for this test vehicle since other methods may be used. As shown in Figure 11, the data show that there was a significant decrease in engine load with the Bully Dog 40420 tuner installed on all tests. According to a document titled 6.7L Powerstroke Diesel Engine: Engine Description, Systems Overview, and Component Location,³³ the engine load on this test vehicle is used to control other systems important for emission control including the EGR, turbo charger, and fuel injection pressure. Based on this information, a change in engine load may affect overall engine and/or emission control performance.

³¹ Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.

³² Ford enhanced parameter FPID-F404. ERG believes this is similar to SAE J1979 PID\$04.

³³ Available online at: http://www.ford-trucks.com/ford-manuals/6.7L_Diesel.pdf.

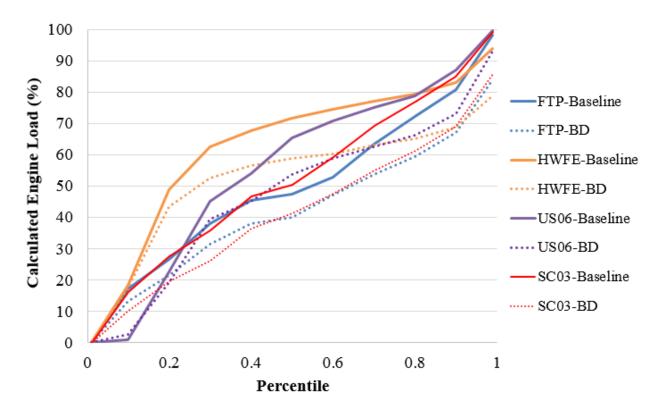


Figure 11. Engine Load (percent) Data Logged from the F-250 Test Vehicle³⁴

e. Fuel Injection Timing

The fuel injection timing parameter³⁵ represents the point in which main fuel injection begins in degrees before (positive number) or after (negative number) top dead center. As shown in Figure 12, the data shows a small timing advance with the Bully Dog 40420 tuner installed on some of the test cycles. On the HWFE test, advancements in fuel injection timing were most apparent for a small portion of the test shown in the zero to 20^{th} percentile range in Figure 12. Changes in fuel injection timing may have a direct impact on engine out NO_x emissions. However, The EPA and ERG were unable to log data related to fuel injection duration, which may also have an effect on emissions.

³⁴ Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.

³⁵ Ford enhanced parameter FPID-F45D.

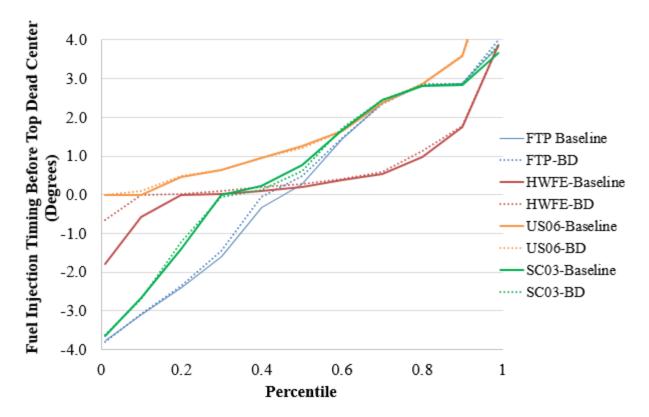


Figure 12. Fuel Injection Timing Data Logged from the F-250 Test Vehicle³⁶

1. F-150 – 3.5 Liter Ford EcoBoost

ERG observed several changes to engine operation on the F-150 test vehicle with the SCT 7015 tuner installed compared to the baseline tests with the stock calibration installed. The parameters for which ERG identified changes are listed below and are discussed in the following subsections. Relevant figures and data tables are provided in these subsections, and Appendix G contains ERG's entire data analysis for the F-150 tests including more detailed descriptions of the data parameters.

- Engine load
- Long-term fuel trims

ERG also examined all other logged parameters for which no significant changes were identified with the SCT 7015 tuner installed, including manifold absolute pressure, catalyst temperature, commanded throttle actuator, commanded air-to-fuel ratio, fuel rail pressure, ignition timing advance, and short-term fuel trim.

a. Engine Load

The engine load parameter³⁷ represents the instantaneous engine load as a percentage of total possible engine load as a function of RPM. According SAE J1979, its calculation is proportional to the instantaneous air flow divided by the maximum air flow at wide open throttle as a function of engine RPM. However, it is unknown if this methodology is in fact used for this test vehicle since other methods may be used. As shown in Figure 13, the data show that there was a significant decrease in engine load with the SCT 7015 tuner installed on all tests.

³⁶ Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.

³⁷ SAE J1979 parameter PID\$04

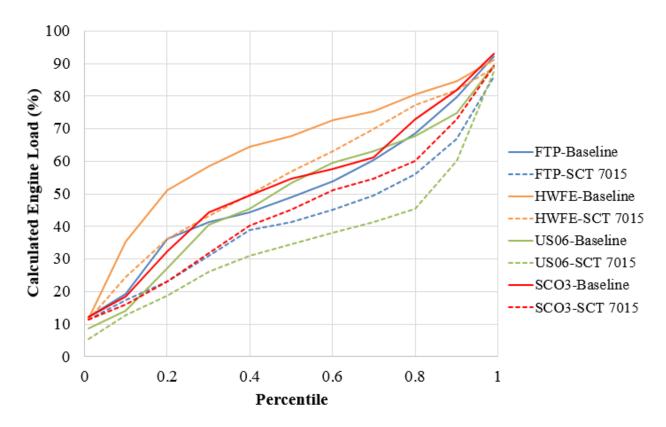


Figure 13. Calculated Engine Load (percent) Data Logged from the F-150 Test Vehicle

a. Long-term Fuel Trims

The long-term fuel trim parameter³⁸ represents the percent change in long-term fuel trims (i.e., a positive value is a change to more fuel input, a negative value is a change to less fuel input). As shown in Figure 14, the data show that there was a significant decrease in long-term fuel trim with the Bully Dog 40420 tuner installed on all tests. As fuel trim represents a change in injector duration (and, hence, volume of fuel provided to the engine), a change in a vehicle's fuel trim may affect emission control performance and the longevity of emission control components, in particular the catalytic converter.

³⁸ SAE J1979 parameter PID\$07

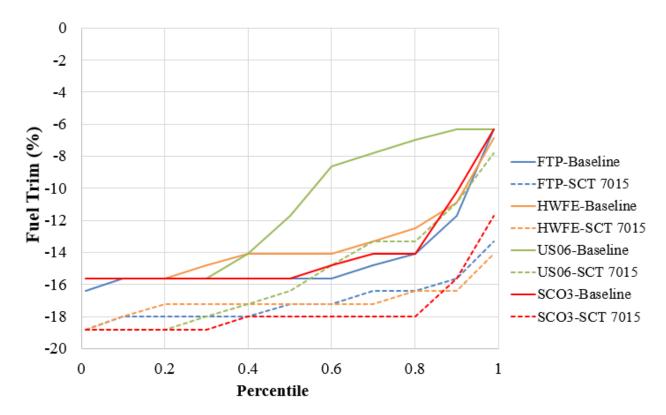


Figure 14. Long-term Fuel Trim (percent) Data Logged from the F-150 Test Vehicle

C. Measured Emissions Results

The following sections summarize the results from emissions testing at EPA's testing facility using a chassis dynamometer. Table 8 and Table 9 in Section III.C (Quality Assurance and Other Documentation) discusses dynamometer calibration settings, test identification numbers, and other information documenting the emission results discussed in this section.

1. F-250 – 6.7 Liter Ford Powerstroke

Table 14 summarizes the baseline (i.e., stock calibration) emission results for the F-250 test vehicle and the results with the Bully Dog 40420 tuner installed. As described in Section III.B.1.a, ERG kept the tuner in the "extreme" shift on-the-fly power level at all times when the tuner was installed on the F-250. EPA measured CO, CO₂, NO_x, NMHC, particulate matter (PM), and calculated fuel economy for each calibration on the FTP, HWFE, US06, and SC03 drive cycles. Results are presented in Table 14. The emissions results are organized by test and calibration. The certified emission levels for this particular engine family are also provided. Additional details on emissions testing and results are provided in Appendices D.

As shown in Table 14, EPA measured 0.295 grams of NO_x per mile on the FTP test with the Bully Dog 40420 tuner installed. This is greater than the applicable standard of 0.2 grams per mile for this engine family set forth in 40 CFR Part 86 and is nearly three times higher than the measured value from the baseline (i.e., stock calibration) FTP test (0.107 grams per mile). When Ford certified this engine family, they measured 0.12 grams of NO_x per mile on the FTP test and certified it at 0.2 grams per mile after applying the appropriate adjustment factors (i.e., deterioration and EAF, See Section III.A). Increases in NO_x emissions over the HWFE and US06 tests were also observed with the Bully Dog 40420 tuner installed but there are no applicable exhaust standard for this engine family on those tests.

Table 14. FTP Emissions Results for MY 2012 F-250 with a 6.7 Liter Powerstroke Diesel Engine with the Bully Dog 40420 Tuner (Extreme Setting)

	(g/m	Measured ii, unless ot	d Results ^a therwise not	ed)	CFMXD06.761A Cert. Information (120,000 miles) ^b									
Test	Pollutant	Baseline (i.e., stock)	BD Extreme	Percent Change	Measured FTP Result (new vehicle)	Upward EAF	DF	Useful Life Cert. Level	Useful Life Cert. Standard					
	CO	0.689	0.904	31%	0.35000	0.01000	0.2100	0.6000	7.3					
FTP	NO_x	0.107	0.295	177%	0.12000									
	NMHC	0.071	0.100	41%	0.03280 0.00110 0.0192 0.0530									
	PM ^c	0.000154	0.000317	106%	0.00500	-0.00010	0.0050	0.0100	0.02					
	FE (mpg)	14.13	14.46	2%										
	CO	0.014	0.015	7%										
	NO_x	0.009	0.036	300%										
HWFE	NMHC	0.004	0.000	-100%										
	PM	0.00020	0.00030	53%										
	FE (mpg)	23.43	23.62	1%										
	CO	0.018	0.019	6%		N/A - No standards apply for this vehicle and test								
	NO_x	0.199	0.442	122%	Ν/Δ - Νο									
US06	NMHC	0.001	0.000	-100%	14/A - 140									
	PM	0.00053	0.00025	-53%	Le standard to which this arrains was contified with the Dully.									
	FE (mpg)	16.92	17.64	4%										
	CO	0.026	0.034	31%										
	NO_x	0.649	0.630	-3%										
SC03	NMHC	0.009	0.008	-11%										
	PM	0.00088	0.00094	6%										
Dod DI	FE (mpg)	14.08	15.59	11%										

 $Red - FTP \ NO_x$ emission levels exceeded the applicable standard to which this engine was certified with the Bully Dog 40420 tuner installed.

Orange – Observed increases in NO_x on the HWFE and US06. However, there are no applicable exhaust standard for this engine family on those tests.

Blue – Fuel economy increased by 11 percent and reduced absolute load recorded with the data logger indicates the A/C was turned off during the Bully Dog SC03 test. ERG was not present during this test on 10 November 2015 to confirm but was present for the baseline test on 28 October 2015 when it was turned on per the SC03 test procedure.

- a All results are rounded to three decimal places unless fewer decimal places were reported in the Appendix D laboratory test reports. PM results are rounded to six decimal places because of the raw results were in milligrams per mile and ERG converted them to grams per mile.
- b All engine certification data, including the number of decimal places, are shown as reported by OTAQ (http://www3.epa.gov/otaq/documents/eng-cert/on-hwy-2012b.xls).
- c Despite the large increase in PM on the FTP test with the Bully Dog tuner installed compared to stock, all PM results are well below the useful life standard.

1. F-150 – 3.5 Liter Ford EcoBoost

Table 15 summarizes the baseline (i.e., stock calibration) emission results for the F-150 test vehicle and the results with the SCT 7015 tuner installed. EPA measured CO, NO_x , NMHC, and fuel economy for each calibration on the FTP, HWFE, US06, and SC03 tests. The emissions results are organized by test and calibration. The certified emission levels reported by Ford for this particular engine family are also provided. As shown in Table 15, none of the measured emissions exceeded certification standards with the SCT 7015 tuner installed.

Table 15. Emissions Results MY 2013 F-150 with a 3.5 Liter EcoBoost Gasoline Engine with the SCT 7015 93 Octane Performance Tune

	Results (g/mi, unless otherwise noted)				DFMXT03.54DX Cert. Info. (50,000 miles)				DFMXT03.54DX Cert. Info. (120,000 miles)					
Test	Pollutant	Baseline	SCT 93 Octane Perf.	Percent Change	Measured FTP Result (new vehicle)	Upward EAF	DF	Useful Life Cert. Level	Measured FTP Result (new vehicle)	Upward EAF	DF	Useful Life Cert. Level		
FTP	CO	0.536	0.578	8%	0.68	0.25	0.9	3.4	0.68	0.63	1.3	4.2		
	NO _x	0.017	0.023	36%	0.008	0.004	0.01	0.05	0.008	0.011	0.02	0.07		
	НМНС	0.024	0.023	-7%	0.0262	0.01	0.036	0.075	0.0262	0.0251	0.051	0.090		
	FE (mpg)	15.57	15.65	1%		N/A No stor	dorde opply		N/A - No standards apply.					
	CO	0.063	0.108	71%		N/A - No standards apply. N/A - No standards					maarus appry.	•		
LIWEE	NO _x	0.004	0.005	25%	0.003	0.004	0.01	0.07	0.0028	0.011	0.014	0.090		
HWFE	НМНС	0.001	0.002	100%	N/A - No standards apply.				N/A No standards apply					
	FE (mpg)	23.85	24.14	1%		N/A - No stai	idards appry.		N/A - No standards apply.					
	CO	1.02	8.75	762%	N/A - No standards apply.			0.66	0.63	1.3	19.3			
US06	NO _x	0.107	0.053	-50%										
0300	НМНС	0.020	.054	170%		N/A - No star	ndards apply.			N/A - No standards apply.				
	FE (mpg)	17.54	17.23	-2%										
	CO	0.856	0.545	-36%	N/A - No standards apply.			0.43	0.63	1.1	6.4			
SC03	NO _x	0.060	0.056	-7%										
	НМНС	0.015	0.013	-13%		N/A - No star	ndards apply.		N/A - No standards apply.					
	FE (mpg)	15.26	15.27	0%										

Blue – Tailpipe backpressure outside the allowable 5" H₂O pressure draw; results cannot be validated.

APPENDIX A PHOTOGRAPH LOG

TAKEN BY: B. Ruminski
DATE TAKEN: 8/13/2015

tuner that ERG purchased directly from Punch-It during the inspection on 4 August 2015. This unit was shipped directly from Bully Dog to ERG.

SITE LOCATION: ERG Chantilly, Virginia Office

PHOTOGRAPH #: 2

TAKEN BY: B. Ruminski
DATE TAKEN: 8/13/2015

COMMENTS: Back of the Bully

Dog 40420 tuner showing the tuner serial number (30V6S0F7L000T).

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: Bottom of the package containing the Bully Dog 40420 tuner that lists the vehicle and engine applications.

SITE LOCATION: ERG Chantilly, Virginia Office

PHOTOGRAPH #: 4

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: Bottom of the package showing the Bully Dog 40420 tuner UPC, part number, serial number (30V6S0F7L000T), and version number (V 1.2.0.0)

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: Contents of Bully

Dog 40420 tuner package

SITE LOCATION: ERG Chantilly, Virginia Office

PHOTOGRAPH #: 6

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: SCT 7015 tuner ERG purchased directly from Punch-It during the inspection on 4 August 2015. ERG took possession during the inspection.

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: Bottom of the SCT 7015 tuner box showing the unit's serial number (X40717156ECA5) and SCT UPC.

SITE LOCATION: ERG Chantilly, Virginia Office

PHOTOGRAPH #: 8

TAKEN BY: B. Ruminski

DATE TAKEN: 8/13/2015

COMMENTS: Back of the SCT 7015 tuner showing the unit's serial number (X40717156ECA5).

TAKEN BY: B. Ruminski

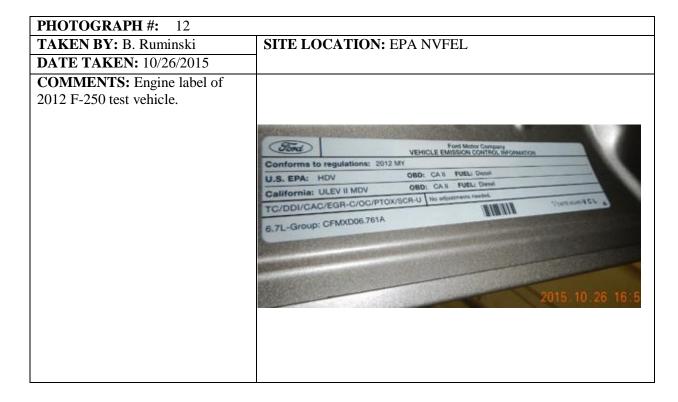
DATE TAKEN: 10/26/2015

COMMENTS: General overview of MY 2012 F-250 test vehicle with a 6.7 Liter Ford Powerstroke diesel engine.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 10

TAKEN BY: B. Ruminski


DATE TAKEN: 10/26/2015

COMMENTS: VIN of 2012 F-250

test vehicle.

PHOTOGRAPH #: 11 TAKEN BY: B. Ruminski DATE TAKEN: 10/26/2015 COMMENTS: Chassis label Engine label of 2012 F-250 test vehicle. DATE TAKEN: 10/26/2015 THIS VEHICLE SAFETY AND THEIR PROMISES AND THE PROMISES

TAKEN BY: B. Ruminski

DATE TAKEN: 10/26/2015

COMMENTS: Odometer reading on the 2012 F-250 test vehicle prior to any testing.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 14

TAKEN BY: B. Ruminski

DATE TAKEN: 10/26/2015

COMMENTS: Stock

aftertreatment system on the 2012 F-250 test vehicle containing a

DOC, SCR, and DPF

TAKEN BY: B. Ruminski

DATE TAKEN: 10/26/2015

COMMENTS: Engine

compartment of F-250 test vehicle with a 6.7 Liter Ford Powerstroke diesel engine showing factory EGR system.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 16

TAKEN BY: B. Ruminski

DATE TAKEN: 10/29/2015

COMMENTS: General overview of 2013 F-150 test vehicle with a

3.5 Liter EcoBoost engine.

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: VIN of 2013 F-150

test vehicle.

SITE LOCATION: EPA NVFEL

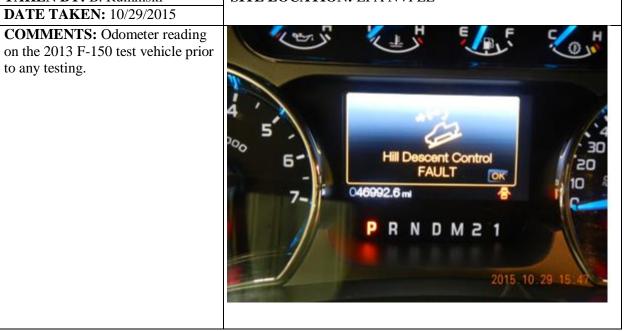
PHOTOGRAPH #: 18

TAKEN BY: B. Ruminski

DATE TAKEN: 10/29/2015

COMMENTS: Chassis label Engine label of 2013 F-150 test

vehicle.



TAKEN BY: B. Ruminski **DATE TAKEN:** 10/29/2015

COMMENTS: Odometer reading

to any testing.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 20

TAKEN BY: B. Ruminski

DATE TAKEN: 11/5/2015

COMMENTS: Passenger side catalyst on the 2013 F-150 test

vehicle.

TAKEN BY: B. Ruminski

DATE TAKEN: 11/5/2015

COMMENTS: Driver side catalyst on the 2013 F-150 test vehicle.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 22

TAKEN BY: B. Ruminski

DATE TAKEN: 10/29/2015

COMMENTS: Engine

compartment of F-150 test vehicle

with a 3.5 Liter EcoBoost.

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: Manual DPF regeneration feature on the Bully Dog 40420 tuner when installed on the F-250 tests vehicle.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 24

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: Manual DPF regeneration method showing the two options for the type of DPF regeneration to force.

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: DPF loading at the beginning of the manual DPF regeneration process forced by ERG using the Bully Dog 40420 tuner on the F-250 test vehicle on 3 November 2015.

SITE LOCATION: EPA NVFEL

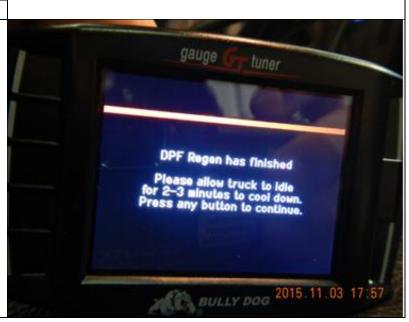
PHOTOGRAPH #: 26

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: DPF loading at the end of the manual DPF regeneration process forced by ERG using the Bully Dog 40420 tuner on the F-250 test vehicle on 3

November 2015.

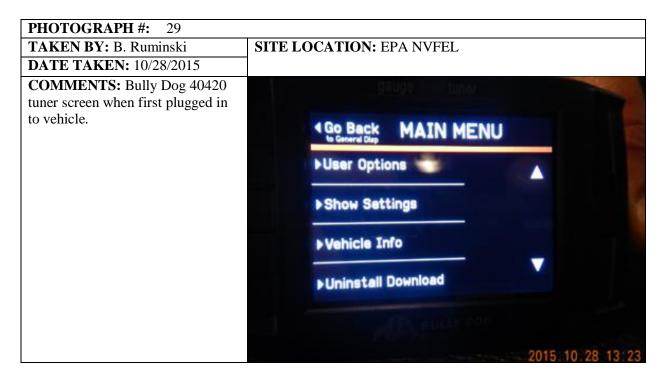


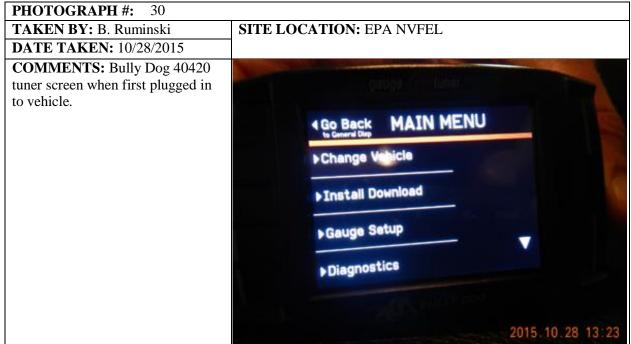
TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

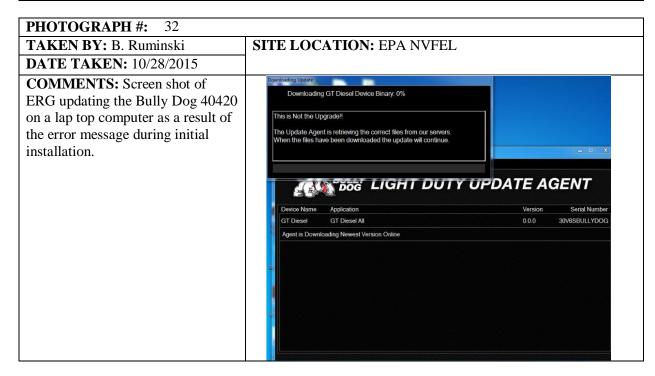
COMMENTS: Prompt observed at the end of the manual DPF regeneration process forced by ERG using the Bully Dog 40420 tuner on the F-250 test vehicle on 3 November 2015.

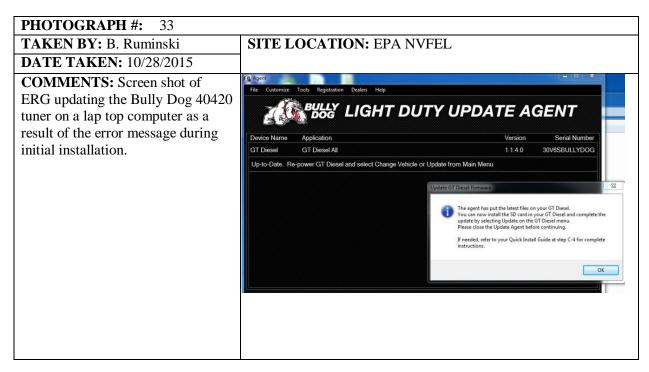
SITE LOCATION: EPA NVFEL

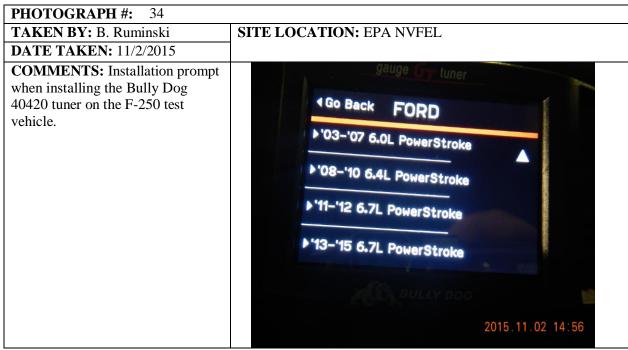

PHOTOGRAPH #: 28


TAKEN BY: B. Ruminski

DATE TAKEN: 10/28/2015


COMMENTS: Bully Dog 40420 tuner screen when first plugged in to vehicle.





PHOTOGRAPH #: 31 TAKEN BY: B. Ruminski DATE TAKEN: 10/28/2015 COMMENTS: Error message ERG initially received when trying to install the Bully Dog 40420 tuner on the F-250 test vehicle. Part Number Not Supported DC3A-14C204-BKE Update Unit and Try again Contact Tech Support if problem continues

TAKEN BY: B. Ruminski

DATE TAKEN: 11/2/2015

COMMENTS: Installation prompt when installing the Bully Dog 40420 tuner on the F-250 test vehicle.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 36

TAKEN BY: B. Ruminski

DATE TAKEN: 11/2/2015

COMMENTS: Installation prompt when installing the Bully Dog 40420 tuner on the F-250 test vehicle.

TAKEN BY: B. Ruminski

DATE TAKEN: 11/2/2015

COMMENTS: Installation prompt when installing the Bully Dog 40420 tuner on the F-250 test vehicle.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: | 38

TAKEN BY: B. Ruminski

DATE TAKEN: 11/2/2015

COMMENTS: Installation prompt when installing the Bully Dog 40420 tuner on the F-250 test vehicle.

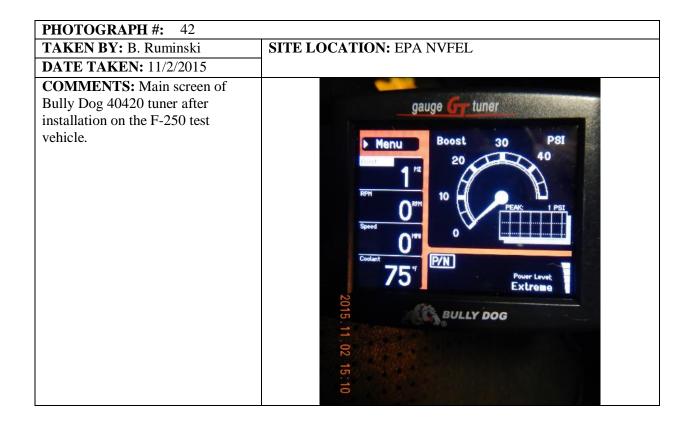
TAKEN BY: B. Ruminski

DATE TAKEN: 11/2/2015

COMMENTS: Installation prompt when installing the Bully Dog 40420 tuner on the F-250 test vehicle.

SITE LOCATION: EPA NVFEL

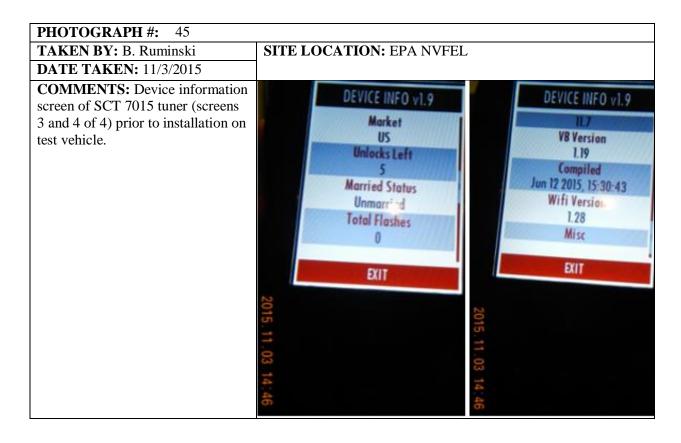
PHOTOGRAPH #: 40

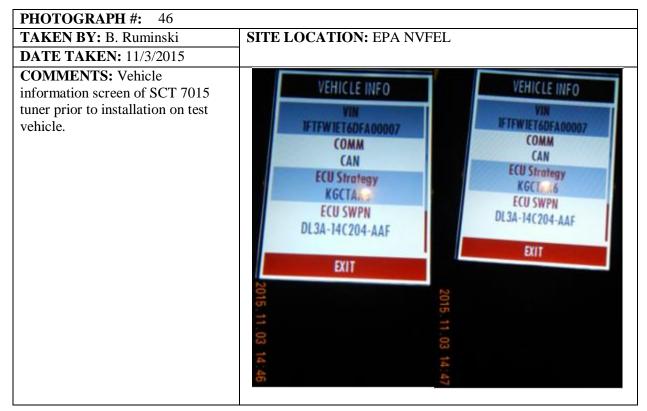

TAKEN BY: B. Ruminski

DATE TAKEN: 11/6/2015

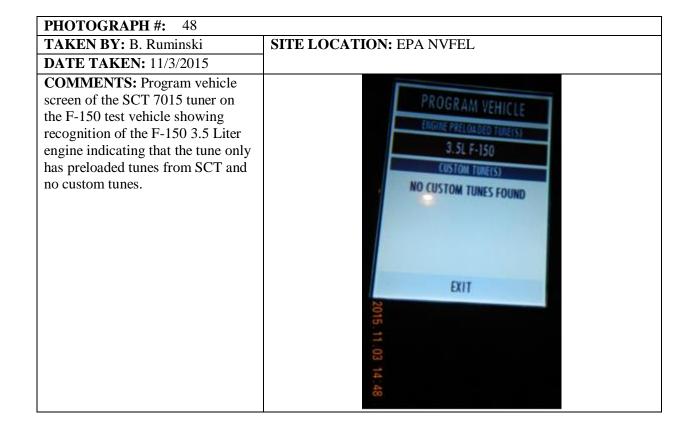
COMMENTS: Final settings of Bully Dog 40420 tuner (screen 1 of 2) immediately before first the first Bully Dog test sequence.

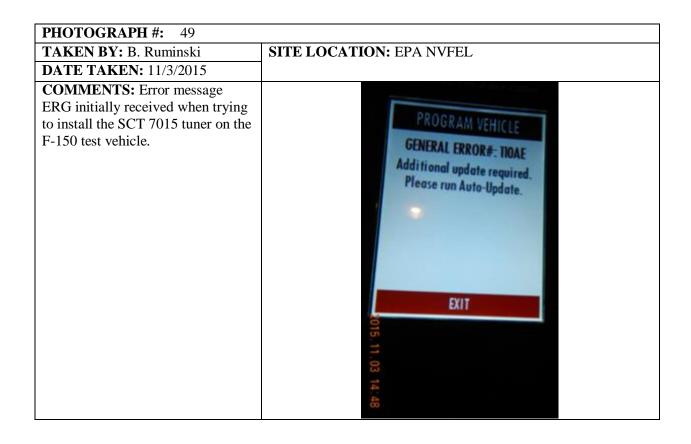
PHOTOGRAPH #: 41 TAKEN BY: B. Ruminski SITE LOCATION: EPA NVFEL **DATE TAKEN:** 11/6/2015 **COMMENTS:** Final settings of Bully Dog 40420 tuner (screen 2 of 2) gauge tuner immediately before first the first Bully Dog test sequence. **SETTINGS** Go Back **Defuel Info** BULLY DOG 2015.11.06 08:41

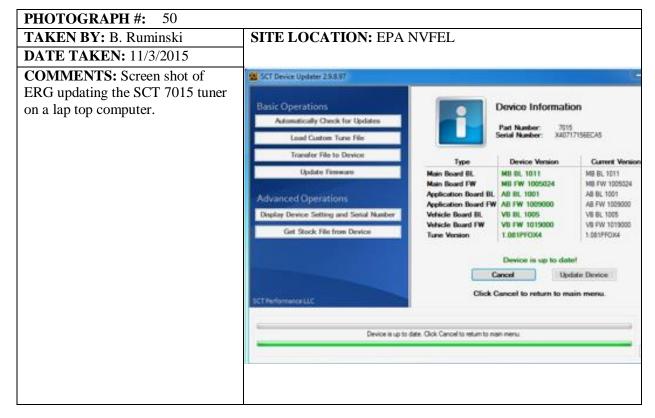


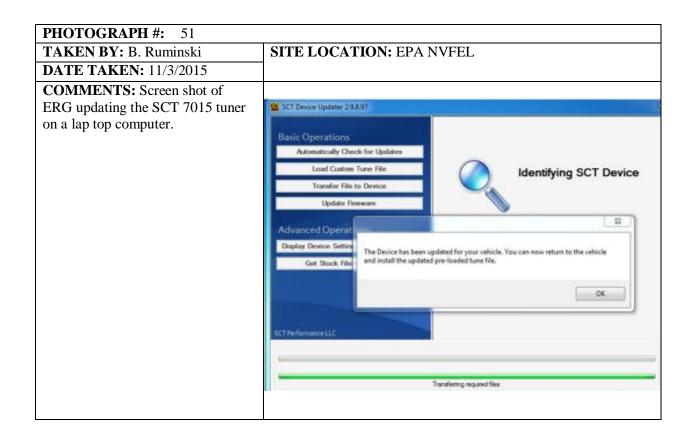

PHOTOGRAPH #: 43 TAKEN BY: B. Ruminski DATE TAKEN: 11/3/2015 COMMENTS: SCT 7015 tuner plugged into the F-150 test vehicle OBD port.

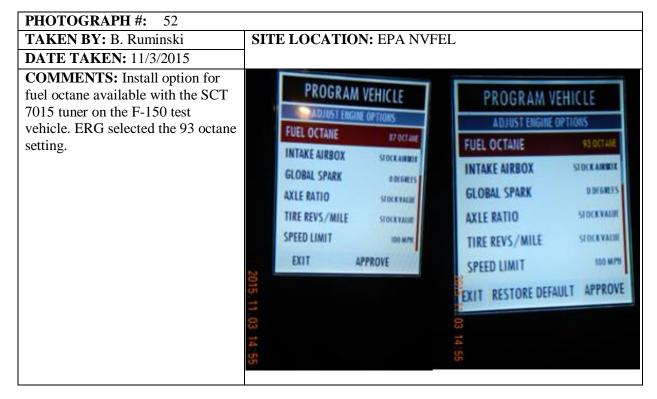
SITE LOCATION: EPA NVFEL

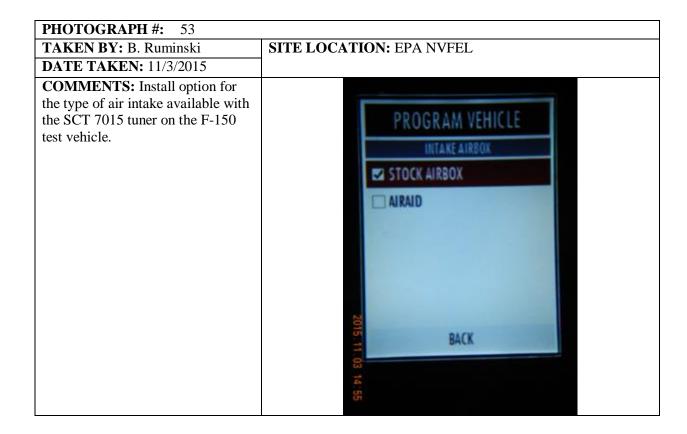


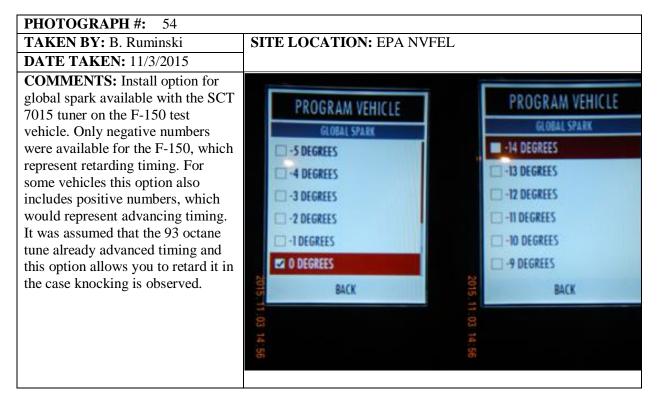

PHOTOGRAPH #: 44 TAKEN BY: B. Ruminski **SITE LOCATION:** EPA NVFEL **DATE TAKEN:** 11/3/2015 **COMMENTS:** Device information screen of SCT 7015 tuner (screens -DEVICE INFO v1.9 1-2 of 4) prior to installation on test vehicle. DEVICE INFO v1.9 **Custom Tuning** Supported Firmware Version 1.1.1.5 build 24 Tune Revision LOSIPFOX4 Prefooded Tuning Market Suppo ed Custom Tuning Supported EXIT EXIT

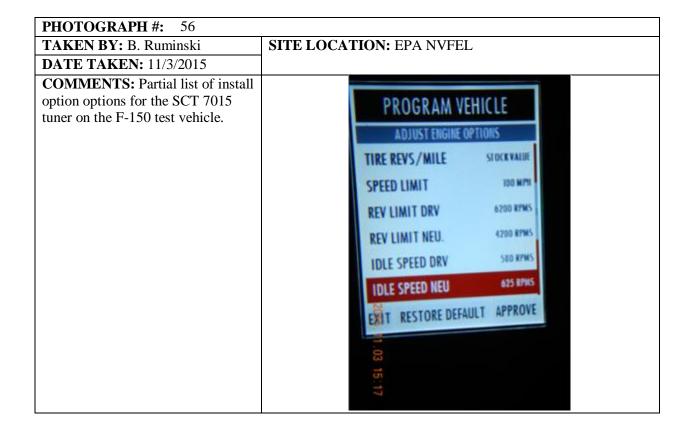


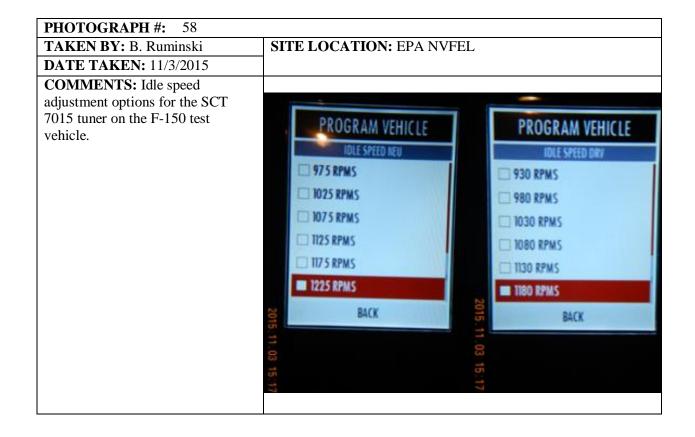


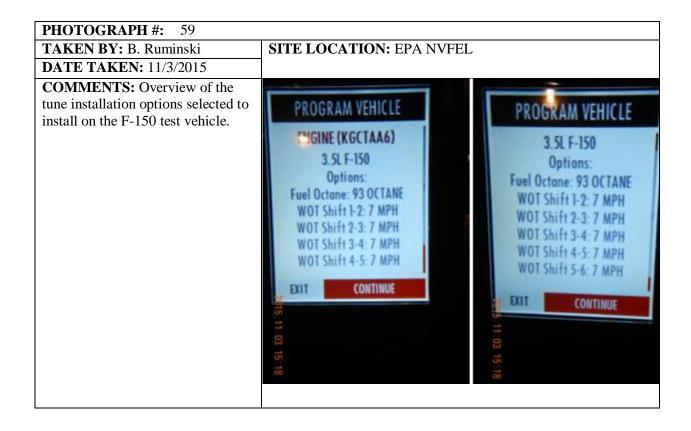

PHOTOGRAPH #: 47					
TAKEN BY: B. Ruminski	SITE LOCATION: EPA NVFEL				
DATE TAKEN: 11/3/2015					
COMMENTS: Street use notice prompted at the beginning of the program vehicle process on the SCT 7015 tuner.	PROGRAM VEHICLE STREET USE NOTICE This device is NOT legal for sale or use in California on any pollution controlled motor vehicles. Press CONTINUE to start programming. EXIT CONTINUE				

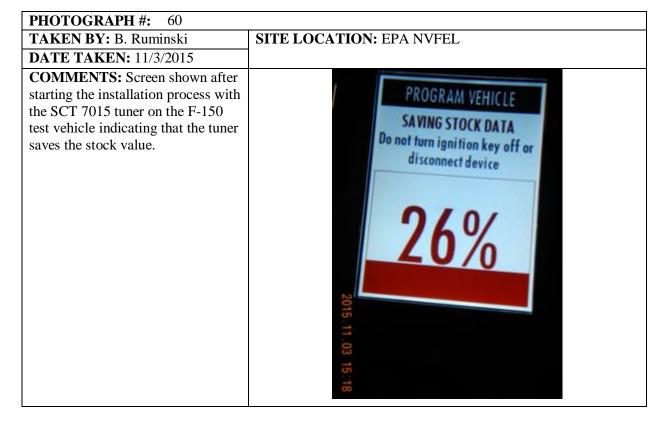




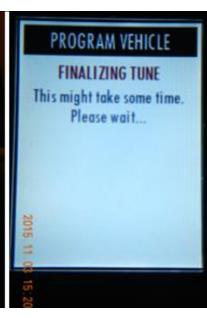







PHOTOGRAPH #: 55					
TAKEN BY: B. Ruminski	SITE LOCATION: EPA NVFEL				
DATE TAKEN: 11/3/2015					
COMMENTS: Install option for wide open throttle (WOT) shift point from first gear into second gear for the SCT 7015 tuner on the F-150 test vehicle. The same option was available for gears 3 through 6.	PROGRAM VEHICLE WOT SHIFT 1-2 2 MPH 3 MPH 4 MPH 5 MPH 6 MPH 7 MPH BACK				

PHOTOGRAPH #: 57				
TAKEN BY: B. Ruminski DATE TAKEN: 11/3/2015	SITE LOCATION: EPA NVFEL			
COMMENTS: Adjust front tire pressure monitor system settings for the SCT 7015 tuner on the F-150 test vehicle. The same option appears for the rear tires as well.	PROGRAM VEHICLE ADJUST FRONT TPMS SETTINGS? NO 30 35 40 45 EXIT			


TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: Screen shown during the installation process with the SCT 7015 tuner on the F-150 test vehicle.

SITE LOCATION: EPA NVFEL

PHOTOGRAPH #: 62

TAKEN BY: B. Ruminski

DATE TAKEN: 11/3/2015

COMMENTS: Screen shown during the installation process with the SCT 7015 tuner on the F-150 test vehicle indicating that the tuner copied the SCT preloaded tune to the vehicle.

PHOTOGRAPH #: 63 TAKEN BY: B. Ruminski DATE TAKEN: 11/3/2015

SITE LOCATION: EPA NVFEL

the end of the initial installation process with the SCT 7015 tuner on the F-150 test vehicle. It was later determined that the vehicle battery voltage was too low to complete the installation, which is a safety net used by SCT. After hooking up to the battery with a charger, ERG was able to successfully repeat the installation process.

PHOTOGRAPH #: 64 TAKEN BY: B. Ruminski SITE LOCATION: EPA NVFEL **DATE TAKEN:** 11/3/2015 **COMMENTS:** Installation confirmation screen on the SCT 7015 tuner after successfully installing the tuner on the F-150 PROGRAM VEHICLE test vehicle. DOWNLOAD COMPLETE Tune has been programmed successfully to vehicle. Turn key off. DONE

PHOTOGRAPH #: 65	
TAKEN BY: B. Ruminski	SITE LOCATION: EPA NVFEL
DATE TAKEN: 11/3/2015	
COMMENTS: Device information screen on the SCT 7015 tuner immediately after successfully installing the tuner on the F-150 test vehicle.	Unlocks Left 5 Married Status Married Current Flash Preloaded Tune - 59 - KGCTAA6* Total Flashes
	03 15:50

APPENDIX B CHRONOLOGICAL ORDER OF PROCEDURES PERFORMED BY THE EPA AND ERG

Table 16. Chronological Order of Procedures Performed by the EPA and ERG

Day	Test Vehicle	Step	
8/4/2015	N/A	ERG purchased a Bully Dog 40420 tuner (SN: 30V6S0F7L000T) directly from Punch-It Performance, LLC (Punch-It), a company the EPA and ERG inspected on 4 August 2015. ERG was unable to take possession of the tuner that day because Punch-It did not have one in stock. Instead, the unit was shipped directly to ERG from Bully Dog Acquisitions. It arrived at ERG's Chantilly, VA office on 11 August 2015.	
8/4/2015	N/A	ERG purchased an SCT 7015 tuner (SN: X40717156ECA5) directly from Punch-It, a company the EPA and ERG inspected on 4 August 2015, and took possession of the tuner the same day.	
10/23/2015	F-250	The F-250 test vehicle arrived at EPA's NVFEL.	
		the EPA and ERG MSEB personnel (Brent Ruminski and Greg Orehowsky) traveled to Anne Arbor, MI and arrived at EPA's NVFEL.	
10/26/2015	F-250	ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-250 test vehicle in the stock configuration. ^a	
		The EPA NVFEL performed the derivation runs with the F-250 to determine the proper dynamometer set coefficients.	
		The EPA NVFEL performed the prep with the F-250 for the baseline (i.e., stock) test.	
10/27/2015	F-250	The EPA NVFEL initiated the baseline (i.e., stock) tests (FTP, HWFE, USO6, SC03) with the F-250. However, during the FTP test, a power conditioner in the lab failed thereby voiding the baseline FTP test.	
		The EPA NVFEL performed the prep with the F-250 for the baseline (i.e., stock) test.	
		The EPA NVFEL performed the baseline (i.e., stock) FTP, HWFE, USO6, and SC03 tests with the F-250.	
10/28/2015	F-250	F-250	The EPA NVFEL determined that the incorrect manufacturer target coefficient was used during the derivation runs for the F-250 resulting in 2.30 to 4.24 percent less road load demanded by the dynamometer, depending on the road speed, than if the correct coefficient was used (see Appendix E). The decision was made to continue testing with the incorrect coefficient because less road load will not adversely affect emissions.
		ERG installed the Bully Dog 40420 tuner onto the F-250.	
		ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-250 test vehicle after installing the Bully Dog 40420 tuner.	
		The EPA NVFEL performed the prep with the F-250 for the Bully Dog 40420 tuner test. ERG set the on-the-fly tune setting to the Extreme level.	
		The EPA NVFEL performed the FTP, HWFE, USO6, and SC03 tests with the Bully Dog 40420 tuner installed on the F-250.	
		ERG returned the F-250 calibration to stock with the Bully Dog 40420 tuner.	
10/29/2015	F-250	ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-250 test vehicle after returning to the stock configuration.	
		ERG attempted to install the SCT 7015 tuner on the F-250 but the installation process was unsuccessful. ERG contacted SCT technical support directly to troubleshoot the error but a fix was never provided to ERG.	
		The F-150 test vehicle arrived at EPA's NVFEL.	
10/30/2015	F-150	ERG obtained the stock OBD data (i.e., Cal IDs, CVNs) from the F-150 test vehicle in the stock configuration.	
		The EPA and ERG MSEB personnel (Brent Ruminski and Greg Orehowsky) departed the EPA NVFEL for the week.	

Table 16. Chronological Order of Procedures Performed by the EPA and ERG

Day	Test Vehicle	Step
	F-250	ERG began analyzing the live engine data logged during the F-250 tests and determined that an active DPF regeneration occurred during the Bully Dog test but not during the baseline tests.
		ERG personnel (Brent Ruminski and Michael Sabisch) traveled to Anne Arbor, MI and arrived at EPA NVFEL.
	F-150	The EPA NVFEL performed the derivation runs with the F-150 test vehicle to determine the proper dynamometer coefficients.
11/2/2015		The EPA NVFEL performed the prep with the F-150 test vehicle for the baseline (i.e., stock) test.
	F-250	ERG reinstalled the Bully Dog 40420 tuner onto the F-250 because it was determined that a DPF regeneration occurred during the Bully Dog test on 29 October 2015 and was therefore not a valid test.
		ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-250 test vehicle after installing the Bully Dog 40420 tuner.
		The EPA NVFEL performed the baseline (i.e., stock) FTP, HWFE, USO6, and SC03 tests with the F-150 test vehicle.
	F-150	ERG installed the SCT 7015 tuner onto the F-150 test vehicle.
11/3/2015		ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-150 test vehicle after installing the Bully Dog 40420 tuner.
	F-250	The EPA NVFEL mounted the F-250 test vehicle to the dynamometer. With the assistance of the EPA NVFEL, ERG used the Bully Dog 40420 tuner to manually force a DPF regeneration on the F-250.
		The EPA NVFEL performed the prep with the F-250 for the Bully Dog 40420 tuner retest.
		The EPA NVFEL lost power during the morning hours.
11/4/2015	F-150	The EPA NVFEL attempted to perform the prep with the F-150 test vehicle for the SCT 7015 tuner test but the road speed fan malfunctioned.
11/5/2015	F-150	The road speed fan was repaired by late afternoon. The EPA NVFEL performed the prep with the F-150 test vehicle for the SCT 7015 tuner test.
		The EPA NVFEL performed the FTP, HWFE, USO6, and SC03 tests with the SCT 7015 tuner installed on the F-150 test vehicle.
	F-150	ERG returned the F-150 test vehicle calibration to stock with the SCT 7015 tuner.
11/6/2015		ERG obtained OBD data (i.e., Cal IDs, CVNs) from the F-150 test vehicle after returning to the stock configuration.
11,0,2013	F-250	ERG double checked OBD data (i.e., Cal IDs, CVNs) from the F-250 test vehicle with the Bully Dog 40420 tuner already installed to ensure that the on-the-fly setting was set to the Extreme level.
	N/A	ERG personnel (Brent Ruminski and Michael Sabisch) departed The EPA NVFEL for the week.
11/9/2015	F-250	The EPA NVFEL performed the prep with the F-250 for the Bully Dog 40420 tuner test.
11/10/2015	F-250	The EPA NVFEL performed the FTP, HWFE, USO6, and SC03 tests with the Bully Dog 40420 tuner installed on the F-250.

a – ERG generally obtained OBD data from the test vehicles at the beginning of each day even if a new calibration was not installed in order to verify that the ECM calibration was not tampered with. ERG recorded the Cal IDs and CVNs each time. Only the OBD data steps immediately before and after a calibration change are shown in this table.

APPENDIX C MISCELLANEOUS EMAIL DOCUMENTATION

APPENDIX D RAW EMISSIONS TEST DATA FROM EPA NVEFEL

APPENDIX E DYNAMOMETER COEFFICIENT DOCUMENTATION FROM EPA NVFEL

APPENDIX F
LIVE DATA ANALYSIS – F-25 TEST VEHICLE WITH THE BULLY DOG 40420 TUNER

APPENDIX G
LIVE DATA ANALYSIS – F-150 TEST VEHICLE WITH THE SCT 7015 TUNER

APPENDIX H
BULLY DOG TUNER – CUSTOMER COMPLAINTS REGARDING DPF REGENERATION

Brent Ruminski

From: Orehowsky, Gregory <Orehowsky.Gregory@epa.gov>

Sent: Friday, October 30, 2015 10:05 AM

To: Brent Ruminski
Subject: FW: Info on F150

Greg Orehowsky
U.Sbre. EPA
Office of Civil Enforcement
Air Enforcement Division
Phone 202-343-9292

From:

Sent: Thursday, October 29, 2015 5:03 PM

To: Orehowsky, Gregory < Orehowsky. Gregory@epa.gov>

Subject: RE: Info on F150

Greg,

Engine family: DFMXT03.54DX Calibration:

From: Orehowsky, Gregory [mailto:Orehowsky.Gregory@epa.gov]

Sent: Thursday, October 29, 2015 4:39 PM

To:

Subject: Info on F150

Truck is here. I didn't know all the places to look. Could we get the engine family for the vehicle and calibration id or part number.

Thanks

Greg Orehowsky
U.S. EPA
Office of Civil Enforcement
Air Enforcement Division
Phone 202-343-9292

Brent Ruminski

From: Sent:

Tuesday, November 10, 2015 9:25 AM

To: Cc: Orehowsky, Gregory Brent Ruminski

Subject:

RE: Mileage on catalysts on diesel and gas vehicles

Greg,

They believe the diesel aftertreatment system age is the same as the odometer.

From:

Sent: Friday, November 06, 2015 10:26 AM

To: 'Orehowsky, Gregory' **Cc:** Brent Ruminski

Subject: RE: Mileage on catalysts on diesel and gas vehicles

Greg,

The gas vehicle catalyst is the mileage as indicated on the odometer.

The diesel vehicle catalyst has some mileage and is not 4K. The engineer of this vehicle is on vacation today and I can get the actual mileage on Monday.

How is the testing going?

From: Orehowsky, Gregory [mailto:Orehowsky.Gregory@epa.gov]

Sent: Friday, November 06, 2015 10:07 AM

To:

Cc: Brent Ruminski

Subject: Re: Mileage on catalysts on diesel ang gas vehiles

Does the mileage on the two vehicles equal the mileage on the vehicles' catalysts?

Thanks

Greg

				Laboratory T				CVS
		Total Minister		aboratory Test I	Results	Vehicle ID.	CODD FORD 40	414/474
Test Information	_		2016-0026-006 10/28/2015		_		FORD F250-18 Ford Motor Cor	
JANTED STATE	Kev	Start / Hot Soak:				MFR Codes:		30
Sall Sall		ainer ID / FTAG:				Config #.		50
3 5	i doi com		19 Cert Diesel 7	15 nom Sulfur		Transmission:		
B 7		Test Procedure:			(#=2h==)	Shift Schedule:		
3		culation Method:		(W/O Can Load)		Beginning Odometer:		
PAL PROTECT		retest Remarks:	Diesei			Drive Schedule:		
-		Drive Axle:	AWD			Soak Period:		
		Bill o ruite	AII D			Count office.	20.0 110010	
Bag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	0.906	12.074 / 12.684	40.468	4.120	0.971	3.894		
Ambient	0.329	2.236	0.223	0.012	0.045	2.051		
Vet Concentration	0.600	10.001 / 10.611	40.261	4.109	0.929	1.993	8.469	
	Remarks:							
Phase 2	2 200	2421.0322	2.121	22.2	2,200	200		
Sample	0.714	3.134 / 3.081	0.494	0.218	0.593	1200 100 100		
Ambient	0.323	2.215	0.073	0.008	0.045		0.000	
Net Concentration	0.405	1.017 / 0.964	0.424	0.210	0.550	0.277	0.666	
	Remarks:							
Phase 3								
Sample	1.001	4.064 / 4.154	15.218	1.139	0.806	2.594		
Ambient	0.324	2.202	0.024	0.006	0.045	2.057		
Net Concentration	0.696	1.994 / 2.084	15.195	1.133	0.763	0.660	1.374	
4	Remarks:							
Phase 4								
Sample								
Ambient								
Net Concentration								
.4	Remarks:	This test has par	ticulate results.					
	N20	THC / IntTHC	co	NOx	CO2	CH4	NMHC	Vol MPG
Results	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)		(gpm)	(mpg)
Results	(gpiii)		2.160	0.328	783.5	0.061	0.225	12.958
Results Phase 1	0.051	- / 0.282		- 1		0.011	0.000	13.856
Name of the last		- / 0.282 - / 0.041	0.036	0.027	736.6	0.014	0.028	
Phase 1	0.051				736,6 636.5	0.014	0.026	16.001
Phase 1 Phase 2 Phase 3	0.051 0.054 0.058	- / 0.041 - / 0.055	0.036 0.806	0.027 0.090	636.5	0.020	0.036 NMOG=NMHC	
Phase 1 Phase 2 Phase 3 Weighted	0.051 0.054	- / 0.041 - / 0.055 0.09464	0.036	0.027		0.020	0.036 NMOG=NMHC 0.07119	16.001
Phase 1 Phase 2 Phase 3	0.051 0.054 0.058 0.058	- / 0.041 - / 0.055 0.09464 Diesel MPG	0.036 0.806	0.027 0.090	636.5	0.020 0.02523 Dyno Settings	0.036 NMOG=NMHC 0.07119 Dyno #:	16.001 D329 - AWD
Phase 1 Phase 2 Phase 3	0.051 0.054 0.058 0.05454 Phase 1	- / 0.041 - / 0.055 0.09464 Diesel MPG 12.92	0.036 0.806	0.027 0.090	636.5	0.020 0.02523 Dyno Settings Aug Brake	0.036 NMOG=NMHC 0.07119 Dyno #: Inertia:	16.001 D329 - AWD 9500
Phase 1 Phase 2 Phase 3 Weighted	0.051 0.054 0.058 0.054 0.05454 Phase 1 Phase 2	- / 0.041 - / 0.055 0.09464 Diesel MPG 12.92 13.81	0.036 0.806	0.027 0.090	636.5	0.020 0.02523 Dyno Settings	0.036 NMOG=NMHC 0.07119 Dyno #: Inertia: EPA Set Co A:	D329 - AWD 9500 -16.94
Phase 1 Phase 2 Phase 3 Weighted	0.051 0.054 0.058 0.05454 Phase 1	- / 0.041 - / 0.055 0.09464 Diesel MPG 12.92	0.036 0.806	0.027 0.090	636.5	0.020 0.02523 Dyno Settings Aug Brake	0.036 NMOG=NMHC 0.07119 Dyno #: Inertia: EPA Set Co A: EPA Set Co B:	D329 - AWD 9500 -16.94 -0.5339
Phase 1 Phase 2 Phase 3 Weighted	0.051 0.054 0.058 0.054 0.05454 Phase 1 Phase 2	- / 0.041 - / 0.055 0.09464 Diesel MPG 12.92 13.81	0.036 0.806	0.027 0.090	636.5	0.020 0.02523 Dyno Settings Aug Brake	0.036 NMOG=NMHC 0.07119 Dyno #: Inertia: EPA Set Co A:	D329 - AWD 9500 -16.94 -0.5339 0.04960

11/3/2015 10:34 AM VTAURdxxx.xls

6.	6.0				Laboratory T				cvs
12			Test Number:	Final L 2016-0026-006	aboratory Test	Results	Vehicle ID:	FORD F250-1	84W121
Results		N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Meth Respon
		(grams)	(grams)	(grams)	(grams)	(grams)	(grams)	(grams)	1.075
	Phase 1		- / 1.005	7.699	1.170	2793.3	0.218	0.802	
	Phase 2	0.208	- / 0.156	0.138	0.102	2816.5	0.052	0.108	
	Phase 3	0.208	- / 0.196	2.885	0.320	2277 6	0.072	0.129	
rest Cor	nditions			Phase 1	Phase 2	Phase 3	Phase 4		
		E	Barometer (inHg)	28.70	28.69	28.68	1.7000		
			Cell Temp (degF)	74.05	74.01	74.03			
			Dew Point (degF)	48.51	48.67	48.71			
	Spe		idity (grains/lbm)	52.78	53.13	53.24			
			NOx Corr Factor	0.9054	0.9068	0.9072			
		CO	2 Dilution Factor	13.723	22.595	16.588			
		CFV	Vmix (scf @68F)	5777.83	9851.38	5736.51			
		Total CVS	Vmix (scf@68F)	5800.31	9889.54	5758.78			
		CVS Flow	Rate Avg (scfm)	683.36	678.47	678.21			
			Fan Placement:	Road Speed Far	1				
		Ph	ase Time (secs)	507.30	871.20	507.50			
			Distance (miles)	3.565	3.824	3.578			
		Bag Anal	ysis Time (secs)	947.3	150.1	79.0			
				FTP B1	FTP B2	FTP B3		FTP-W	MFR
			IWR % diff	-2,742	-1.973	-0.571		-1.752	-
			ASCR % diff	-1.477	-0.929	-0.301		-0.883	-
			EER	-0.636	-1.199	-0.574		-0.869	-

v150811 - d329 EPAVDAEm151028071922 Page 2 of 5 Print Time 03-Nov-2015 10:34

Final Laboratory Test Results

PARTICULATE

Test Number: 2016-0026-006 Test Date: 10/28/2015

Key Start: 07:38:14 / 09:57 Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 02 CVS 75-Later (w/o Can Load) (ftp3bag)

Pretest Remarks:

Calculation Method: Diesel

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company

MFR Codes: FMX Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 052832.0 MI

Drive Schedule: ftp3bag

Soak Period: 20.8 hours

							-	All filter weights are con	rected for buoyancy
Particulate	Filter		Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler		No.	(Pre Wt)	(Post Wt)	mg	mg	mg/mi	comment
Phase 1		A	220215117	363.1513	363.1522	0.00088	0.687	0.193	
		В	220215120	362.3767	362.3765	0.00000	0.000	0.000	
		C	220215123	360.5820	360,5829	0.00091	0.714	0.200	
	Remarks:							- 100	
Phase 2		A	220215118	366.0701	366.0708	0.00064	0.498	0.130	
1333		В	220215121	368.6038	368.6037	0.00000	0.000	0.000	
		C	220215124	366.4137	366.4123	0.00000	0.000	0,000	
1	Remarks:								
Phase 3		A	220215119	365,8039	365,8004	0.00000	0.000	0.000	
		В	220215122	362.3384	362.3373	0.00000	0.000	0.000	
		C	220215125	364.2648	364.2656	0.00077	0.596	0.167	

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass	
	mg	mg	mg / mi	
Phase 1	0.00060	0.700	0.196	
Phase 2	0.00021	0.498	0.130	
Phase 3	0.00026	0.596	0.167	

All filter weights are corrected for buoyancy.

Weighted All Filters	i i					0.15403
Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #: D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia: 9500
0.01	1	365.48782	365.48537	-0.00245	PASS	EPA Set Co A: -16.94
, , , , , , , , , , , , , , , , , , , ,	2	365.77463	365.77298	-0.00165	PASS	EPA Set Co B: -0.5339
PM Media						EPA Set Co C: 0.04960
MTL PTFE_PFA						Emissions Benci Mexa 7200dle
v150811 - d329 EPAVDAEm15102	28071922		Page 3 of 5			Print Time 03-Nov-2015 10

60	A			Laboratory Te			PARTICULAT
1	y	Tost Mumber	Final 2016-0026-006	Laboratory Test R	esults	Vahiola ID	FORD F250-184W121
WEIGHING C	HAMBED	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp
	0/26/15 11:24	1.0003967	322990	71.6	49.6	29.48	NORM @ 10/26/15 08:33:35
	0/28/15 13:21	1.0003837	322990	71.3	49.4	28.50	NORM @ 10/28/15 09:58:32
						A-14.5	
est Conditio	ons		Phase 1	Phase 2	Phase 3	Phase 4	
	Ba	arometer (inHg)	28.70	28.69	28.68		
	Avg Ce	ell Temp (degF)	74.05	74.01	74.03		
	De	ew Point (degF)	48.51	48.67	48.71		
	Specific Humio	lity (grains/lbm)	52.78	53.13	53.24		
	N	Ox Corr Factor	0.9054	0.9068	0.9072		
		Dilution Factor	13.72	22.60	16.59		
	CFV V	mix (scf @68F)	5777.83	9851.38	5736,51		
		e A (scf @68F)	7.434	12.752	7.339		
	CALL BUILD VICTOR OF LAND	e B (scf @68F)	7.616	12.694	7.538		
		e C (scf @68F)	7.423	12.719	7.393		
	Sample Volume		10,000	18.7.18	0.000		
	e Volume Avera		7.491	12.721	7.423		
Sample		mix (scf @68F)	5800.31	9889.54	5758.78		
		ase Time (sec)	507.30	871.20	507.50		
		istance (miles)	3.565	3.824	3.578		
	PSII	Probe A (degC)					
		Probe B (degC)					
		Probe C (degC)					
		Dil Air A (degC)	46.8	44.8	44.1		
		Dil Air B (degC)	42.1	39.5	40.4		
		Oil Air C (degC)	42.2	41.3	40.6		
			45.9	46.0	47.4		
		Filter A (degC)	47.7	47.7	48.8		
		Filter B (degC)					
		Filter C (degC)	48.7	48.6	47.9		
		Dil Flow A (Ipm)	29.9	29.9	29.7		
		Dil Flow B (lpm)	29.9	29.9	29.7		
		il Flow C (lpm)	29.8	29.9	29.6		
		Proportionality .					
		Proportionality .					
	PSU C	Proportionality .					

11/3/2015 10:34 AM VTAURdxxx xls

Final Laboratory Test Results

Test Number: 2016-0026-003

Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

CVS

Test Information

Test Date: 10/28/2015

Key Start: 09:02:38

Fuel Container ID / FTAG: F00023 / 25330 Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Test Procedure: 3 HWFET (hwfetprep_hwfet) FE Calculation Method: Diesel

Pretest Remarks: Drive Axle: AWD

Transmission: Auto Shift Schedule: A0EPA0011

MFR Codes: FMX

Config #: 00

Beginning Odometer: 052843.0 MI

Drive Schedule: hwfetwarmup_hwfet

Bag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)
Sample	0.792	2.602 / 2.667	0.511	0.229	1.044	2.232	
Ambient	0.329	2.147	0.000	0.008	0.046	2.047	
Net Concentration	0.489	0.622 / 0.688	0.511	0.222	1.002	0.345	0.317

Remarks:

Phase 2

Sample Ambient

Net Concentration

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample Ambient **Net Concentration**

Remarks: This test has particulate results.

Results	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
-	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase	e 1 0.021	- / 0,009	0.014	0.009	434.2	0.005	0.004	23.509

NMOG=NMHC

Fuel Economy	Diesel MPG		Dyno Settings	Dyno #: D329 - AWD
	Phase 1 23,43		Aug Brake	Inertia: 9500 EPA Set Co A: -16.94
			- 4	EPA Set Co B: -0.5339
			÷	EPA Set Co C: 0.04960
			AWD	Emiss-Bench: Mexa 7200dle
v150811 - d329	EPAVDAEm151028083843	Page 1 of 2		Print Time 03-Nov-2015 10:33

VTAURdxxx.xls 11/3/2015 10:33 AM

(0)		aboratory T				cvs		
Test Number:	Final La	boratory Test	Results	Vehicle ID:	FORD F250-1	8410/121		
esults N2O THC / IntTHC	<u>CO</u>	NOx	CO2	CH4	NMHC	Meth Respon		
(grams) (grams)	(grams)	(grams)	(grams)	(grams)	(grams)	1.075		
Phase 1 0.217 - / 0.096	0.144	0.093	4442.4	0.056	0.044			
st Conditions	Phase 1	Phase 2	Phase 3	Phase 4				
Barometer (inHg)	28.64							
Avg Cell Temp (degF)	73.97							
Dew Point (degF)	48.78 53.45							
Specific Humidity (grains/lbm) NOx Corr Factor	0.9080							
CO2 Dilution Factor	12.826							
CFV Vmix (scf @68F)	8522.84							
Total CVS Vmix (scf@68F)	8556.51							
CVS Flow Rate Avg (scfm)	668.37							
Fan Placement: I								
Phase Time (secs)	765.10							
Distance (miles)	10.231							
Bag Analysis Time (secs)	57.3							
	HWY					MFR		
IWR % diff	1.458							
ASCR % diff	1.338					MFR		
EER	-0.331					-		

11/3/2015 10:33 AM VTAURdxxx.xls

Final Laboratory Test Results

PARTICULATE

Test Information

Test Number: 2016-0026-003 Test Date: 10/28/2015

Key Start: 09:02:38 Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 3 HWFET (hwfetprep_hwfet)

Calculation Method: Diesel Pretest Remarks: Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

MFR Codes: FMX

30

Config #: 00 Transmission: Auto

Shift Schedule: A0EPA0011 Beginning Odometer: 052843.0 MI

Drive Schedule: hwfetwarmup_hwfet

						3111		All filter weights are con	rected for buoyancy.
Particulate	Filter Sampler		Filter No.	Tare (Pre Wt)	Gross (Post Wt)	Net Wt	Total Mass mg	Total Mass mg / mi	Filter comment
Phase 1		Α	220215147	362.9483	362.9481	0.00000	0.000	0.000	£
		В	220215148	361.8706	361.8736	0.00304	2.291	0.224	
		C	220215149	367.0179	367.0202	0.00228	1.748	0.171	

Remarks:

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass	
	mg	mg	mg / mi	
Phase 1	0.00177	2.020	0.197	

All filter weights are corrected for buoyancy

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #: D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia: 9500
0.01	1	365.48761	365.48530	-0.00231	PASS	EPA Set Co A: -16.94
	2	365,77402	365.77281	-0.00121	PASS	EPA Set Co B: -0.5339
PM Media MTL PTFE PFA		7.3 *19.3				EPA Set Co C: 0.04960
MACE TO COLOR						Emissions Bencl Mexa 7200dle
v150811 - d329 EPAVDAEm15102	28083843		Page 1 of 2			Print Time 03-Nov-2015 10:30

11/3/2015 10:33 AM VTAURdxxx xls

6.0				Laboratory Te			PARTICULAT
(2)	2)	Test Number	2016-0026-003	Laboratory Test R	esults	Vehicle ID:	FORD F250-184W121
WEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp
re-test	10/26/15 15:41	1.0003955	322990	72	49.4	29.42	NORM @ 10/26/15 08:33:35
ost-test	10/28/15 14:01	1.0003832	322990	71.7	49.4	28.49	NORM @ 10/28/15 09:58:32
est Cond	itions		Phase 1	Phase 2	Phase 3	Phase 4	
	В	arometer (inHg)	28.64				
		ell Temp (degF)	73.97				
	De	ew Point (degF)	48.78				
		dity (grains/lbm)	53.45				
	N	NOx Corr Factor	0.9080				
		Dilution Factor	12.83				
	CFV V	mix (scf @68F)	8522.84				
		e A (scf @68F)	11.168				
		e B (scf @68F)	11.354				
	Sample Volum	e C (scf @68F)	11 143				
	Sample Volum	e D (scf @68F)					
San	nple Volume Aver	age (scf @68F)	11.222				
		mix (scf @68F)	8556.51				
	Ph	nase Time (sec)	765.10				
		Distance (miles)	10.231				
	PSU	Probe A (degC)					
	PSU	Probe B (degC)					
	PSU I	Probe C (degC)					
	PSU I	Dil Air A (degC)	44.4				
	PSUI	Dil Air B (degC)	39.8				
	PSU I	Dil Air C (degC)	41.1				
	PSU	Filter A (degC)	47.5				
	PSU	Filter B (degC)	50.8				
	PSU	Filter C (degC)	50.1				
	PSU [Dil Flow A (Ipm)	29.8				
		Dil Flow B (lpm)	29.8				
		Dil Flow C (Ipm)	29.8				
	PSU A	Proportionality					
		Proportionality					
	PSU C	Proportionality					
50811 - d32	9 EPAVDAEm151	028083843		Page 2 of 2		-	Print Time 03-Nov-2015 10

11/3/2015 10:33 AM

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0026-005

Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

CVS

Test Information

Test Date: 10/28/2015

Key Start: 11:48:06

Fuel Container ID / FTAG: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Test Procedure: 8.09 sc03wu sc03

FE Calculation Method: Diesel Pretest Remarks:

MFR Codes: FMX Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 052879.0 MI

Drive Schedule: sc03wu_sc03

Drive Axle: AWD

Bag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)
Sample	0.837	2.541 / 2.482	0.412	7.017	0.785	2.036	
Ambient	0.323	2.177	0.000	0.022	0.044	2.025	
Net Concentration	0.533	0.492 / 0.433	0.412	6.997	0.743	0.129	0.294

Remarks: PSU B Proportionality took about 1000secs. to get on specs.

Phase 2

Sample Ambient

Net Concentration

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample Ambient

Net Concentration

Remarks: This test has particulate results.

Results	N2O	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.052	- / 0.013	0.026	0.649	722.4	0.005	0.009	14 129

NMOG=NMHC

Fuel Economy	Diesel MPG		Dyno Settings	Dyno #:	D329 - AWD
Ph	Phase 1 14.08		Aug Brake Y	EPA Set Co A: EPA Set Co B: EPA Set Co C:	-16.94 -0.5339
			÷	EPA Sel Co C.	0.04000
			AWD	Emiss-Bench:	Mexa 7200dle
v150811 - d329	EPAVDAEm151028110521	Page 1 of 2		Print Tin	ne 03-Nov-2015 10:3

VTAURdxxx xls 11/3/2015 10:34 AM

(9)	NVFEL L	aboratory T	est Data	. Jacobalea	5.04 1.76	cvs
Final Laboratory Test Results Test Number:		e from CFR pr	ocedures per Ol		FORD F250-1	
Results N2O THC / IntTHC (grams) (grams) Phase 1 0.186 - / 0.048	<u>CO</u> (grams) 0.091	<u>NOx</u> (grams) 2.326	<u>CO2</u> (grams) 2589.3	<u>CH4</u> (grams) 0.016	NMHC (grams) 0.032	Meth Response 1.075
Test Conditions Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF)	Phase 1 28.57 73.87 49.31	Phase 2	Phase 3	Phase 4		
Specific Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) Total CVS Vmix (scf@68F)	54.65 0.9127 17.064 6699.55 6725.72					
CVS Flow Rate Avg (scfm)	674.45					
Fan Placement: I Phase Time (secs) Distance (miles) Bag Analysis Time (secs)	596.00 3.584 83.0					
IWR % diff ASCR % diff EER						MFR - - -

11/3/2015 10:34 AM VTAURdxxx xls

Page 2 of 2

EPAVDAEm151028110521

v150811 - d329_

Print Time 03-Nov-2015 10:34

PARTICULATE

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0026-005

Vehicle ID: FORD F250-184W121

Test Information

Test Date: 10/28/2015

Key Start: 11:48:06

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Test Procedure: 8.09 sc03wu_sc03

Calculation Method: Diesel

Pretest Remarks:

MFR Name Ford Motor Company MFR Codes: FMX

Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0005

Beginning Odometer: 052879.0 MI

Drive Schedule: sc03wu_sc03

Particulate	<u>Filter</u> Sampler	Filter No.	Tare (Pre Wt)	Gross (Post Wt)	Net Wt mg	Total Mass mg	Total Mass mg / mi	Filter comment
Phase 1	Α	220215129	367.4670	367,4700	0.00301	2,335	0.651	
	В	220215130	362,3705	362.3780	0.00747	5.701	1.591	
	C	220215131	366.6837	366.6855	0.00182	1.412	0.394	

Remarks:

PSU B Proportionality took about 1000secs, to get on specs.

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass
	mg	mg	mg / mi
Phase 1	0.00410	3.149	0.879

All filter weights are corrected for buoyancy.

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check		D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.48783	365.48556	-0.00227	PASS	EPA Set Co A:	-16.94
17.5	2	365.77394	365.77297	-0.00097	PASS	EPA Set Co B:	-0.5339
PM Media MTL PTFE PFA		444,444				EPA Set Co C:	0.04960
M.E.S.(CZ_5176)						Emissions Benc	Mexa 7200dle
v150811 - d329 EPAVDAEm15102	28110521		Page 1 of 2			Print Tim	re 03-Nov-2015 10:

12	inal Laborate	Test Number: 2	NOTE: Varia	ince from CFR pro	cedures per Ol		October 2015 FORD F250-184W121
WEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp
Pre-test	10/26/15 11:49	1.0003967	322990	71.5	49.4	29.48	NORM @ 10/26/15 08:33:35
Post-test	10/29/15 9:39	1.0003850	322990	71.2	49.7	28,60	NORM @ 10/28/15 09:58:32
Test Condi	tions		Phase 1	Phase 2	Phase 3	Phase 4	
CO CARONE	B	arometer (inHg)	28.57				
	Avg Ce	ell Temp (degF)	73.87				
		ew Point (degF)	49.31				
		dity (grains/lbm)	54.65				
		Ox Corr Factor	0.9127				
		Dilution Factor	17.06				
	CFV V	mix (scf @68F)	6699.55				
		e A (scf @68F)	8.680				
		e B (scf @68F)	8.818				
	Sample Volume	e C (scf @68F)	8.680				
	Sample Volume	e D (scf @68F)					
San	iple Volume Avera		8.726				
		mix (scf @68F)	6725.72				
		ase Time (sec)	596.00				
	C	Distance (miles)	3.584				
		Probe A (degC)					
		Probe B (degC)					
		Probe C (degC)	520				
		Oil Air A (degC)	43.5				
		Dil Air B (degC)	39.3				
		Dil Air C (degC)	40.2				
		Filter A (degC)	45.5				
		Filter B (degC)	47.5				
		Filter C (degC)	48.3 29.7				
		Oil Flow A (Ipm) Oil Flow B (Ipm)	29.7				
			29.6				
		Oil Flow C (lpm) Proportionality	29.0				
		Proportionality					
		Proportionality .					
	1500	1 Toportionality .					

11/3/2015 10:34 AM VTAURdxxx.xls

Page 2 of 2

v150811 - d329

EPAVDAEm151028110521

Print Time 03-Nov-2015 10:34

				Laboratory Te				CVS
		Toot Number	2016-0026-004	Laboratory Test F	Results	Vehicle ID	FORD F250-18	MW121
Test Information	_		10/28/2015			5.4009171707	Ford Motor Cor	0.1.6.7.0.1.0.0
WITED STATE		Key Start:				MFR Codes:		30
Sall and State	Fuel Co	ntainer ID / FTAG:				Config #		50
5 D	r der con							
			19 Cert Diesel 7			Transmission:		
	50.0			s06warmup_2bagi		Shift Schedule:		
The most of		alculation Method:	Diesel		В	eginning Odometer:		
-		Pretest Remarks:	4146			Drive Schedule:	us06warmup_2	2bagus06
	-	Drive Axle:	AWD					
lag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	1000		0.871	17.202	1.721	1.757		
Ambient			0.036	0.538	0.071	2.009		
let Concentration		The state of the s	0.839	16.734	1.660	0.006	0.368	
ict Gonocitiation	0.152	0.0207 0.070	0.000	10.104	1.000	0.000	0.500	
	Remark	s: PSU Proportions	ality outside of CE	R specifications -	Variant Test			
hase 2				oppositioning -	- unain 163t			
Sample	1.182	2.200 / 2.204	0.884	6.493	1.886	1.922		
Ambient		2.173	0.033	0.093	0.052	2.017		
let Concentration			0.856	6.413	1.841	0.189	0.133	
							2000	
	Remarks	s:						
hase 3	0.7877-0-72				- 2			
Sample								
Ambient								
Net Concentration								
Phase 4	Remarks	S'é						
Sample								
Ambient								
let Concentration								
	Remarks	s: This test has par	ticulate results.					
esults	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
Victor Control	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1		- / 0.009	0.040	1.204	1255,3	0.000	0.009	8.132
Phase 2		- / 0.003	0.018	0.199	601.4	0.002	0.001	15.973
Composite	0.04191		0.02278	0.42121	745.878	0.00180	0.00301	
uel Economy	-74	Diesel MPG				Dyno Settings		D329 - AWD
	Phase '	1 8.11				Aug Brake	Inertia:	
	Phase 2	2 16.92				Y	EPA Set Co A	-16.94
	-						EPA Set Co B	
						4	EPA Set Co C	
						7		
	omposite	13.64	- P			AWD	Emiss-Bench:	Meya 72004

(0)			Laboratory To				CVS
	+		aboratory Test I	Results	MARKET IN	5000 F050 4	0.414.04
Results N20	THC / IntTHC	2016-0026-004 CO	NOx	CO2		FORD F250-1 NMHC	Meth Respons
(grams)	(grams)		(grams)		CH4 (grams)		1.075
		(grams)	2.129	(grams)		(grams)	1.075
Phase 1 0.153 Phase 2 0.183	- / 0.016 - / 0.022	0.071	1.243	2219.7 3750.6	0.000	0.016	
Filase 2 0.103	- 70.022	0.111	1.245	3/30.0	0.014	0.009	
est Conditions	to (intlet)	Phase 1	Phase 2	Phase 3	Phase 4		
A C	arometer (inHg)	28.61	28.61				
	ell Temp (degF)	74.12	74.02				
	ew Point (degF)	48.96	49.03				
	lity (grains/lbm)	53.88	54.03				
	Ox Corr Factor	0.9097	0.9103				
	Dilution Factor	7.784	7.103				
	mix (scf @68F)	2571.51	3916.40				
Total CVS V	/mix (scf@68F)	2581.50	3931.54				
CVS Flow F	Rate Avg (scfm)	649.10	643.79)	
	an Placement:	Road Speed Fan					
	se Time (secs)	130.00	365.00	107.70			
	listance (miles)	1.768	6.236				
	sis Time (secs)	57.5	239.2				
		US06-C	US06-H			US06-T	MFR
	IWR % diff	0.808	-11.242			-5,055	
	ASCR % diff	0.689	-8.587			-2.249	-
	EER	0.894	-0.936			-0.373	

Page 2 of 5

VTAURdxxx.xls

Print Time 03-Nov-2015 10:33

v150811 - d329_

EPAVDAEm151028100338

Final Laboratory Test Results

PARTICULATE

Test Information

Test Number: 2016-0026-004 Test Date: 10/28/2015

Key Start: 10:34:37

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 89 us062bag (us06warmup_2bagus06)

Calculation Method: Diesel

Pretest Remarks:

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company MFR Codes: FMX 30

Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0041

Beginning Odometer: 052863.0 MI

Drive Schedule: us06warmup_2bagus06

Particulati	Filter	Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler	No.	(Pre Wt)	(Post Wt)	mg	mg	mg/mi	comment
Phase 1	A	220215126	362.9477	362.9513	0.00354	2.923	0.365	
	В	220215127	365.7792	365.7836	0.00431	3.228	0.403	
	C	220215128	362.5770	362.5856	0.00865	6.579	0.822	

Remarks:

PSU Proportionality outside of CFR specifications - Variant Test

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results

Average Results	Net Wt	Total Mass	Total Mass
	mg	mg	mg / mi
Phase 1	0.00550	4.243	0.530

All filter weights are corrected for buoyancy.

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check		D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.48783	365.48494	-0.00289	PASS	EPA Set Co A:	-16.94
1007.4	2	365.77394	365.77265	-0.00129	PASS	EPA Set Co B	-0.5339
PM Media MTL PTFE PFA						EPA Set Co C:	0.04960
WIEF-U-E_FIA						Emissions Benc	Mexa 7200dle
v150811 - d329 EPAVDAEm15102	28100338		Page 3 of 5			Pont Tim	e 03-Nov-2015 10:33

11/3/2015 10:33 AM VTAURdxxx.xls

6.0	6			Laboratory Te			PARTICULAT
17		Test Number:		Laboratory Test R	esuits	Vehicle ID:	FORD F250-184W121
VEIGHING Pre-test	CHAMBER Timestamp 10/26/15 11:49	Buoyancy Factor 1.0003967	Operator (id) 322990	Chamber Temp (°F) 71.5	Dew Point (°F) 49.4	Barometer ("Hg) 29.48	Last Change in Status Status @ timestamp NORM @ 10/26/15 08:33:35
ost-test	10/29/15 9:20	1.0003847	322990	71.6	49.5	28.60	NORM @ 10/28/15 09:58:32
est Condi	tions		Phase 1	Phase 2	Phase 3	Phase 4	
	Ba	arometer (inHg)	28.61	28.61			
		ell Temp (degF)	74.12	74.02			
	De	ew Point (degF)	48.96	49.03			
		tity (grains/lbm)	53.88	54.03			
		Ox Corr Factor	0.9097	0.9103			
		Dilution Factor	7.78	7.10			
	CFV V	mix (scf @68F)	2571.51	3916.40			
		e A (scf @68F)	7.892	4.820			
	The second secon	e B (scf @68F)	8.692	5.164			
	The second secon	e C (scf @68F)	8.561	5.164			
		e D (scf @68F)	4.567				
Sam	ple Volume Avera		8.382	5.049			
Oun		mix (scf @68F)	2581.50	3931.54			
		ase Time (sec)	130.00	365.00	107.70		
		Distance (miles)	1.768	6.236	197.55		
	PSU F	Probe A (degC)					
	PSU F	Probe B (degC)					
	PSU F	Probe C (degC)					
	PSU I	Dil Air A (degC)	44.7	44.5			
		Dil Air B (degC)	40.0	39.9			
	PSU [Oil Air C (degC)	41.2	41.1			
	PSU	Filter A (degC)	47.6	47.6			
		Filter B (degC)	48.4	48.3			
	PSU	Filter C (degC)	49.0	48.8			
		Oil Flow A (Ipm)	29.2	28.9			
		il Flow B (lpm)	29.2	28.9			
		Dil Flow C (Ipm)	29.1	28.9			
		Proportionality .		0.00			
		Proportionality					
		Proportionality					
		0,1-1,-10,-10,20,4					
50811 - d329	EPAVDAEm151	028100338		Page 4 of 5			Print Time 03-Nov-2015 10

11/3/2015 10:33 AM VTAURdxxx xls

				Laboratory T				cvs
		Tool Number	2016-0026-008	Laboratory Test	Results	Vahiala ID:	FORD F250-18	410/101
Tank Information	_		10/29/2015		_			
est Information		v Start / Hot Soak:		1		MFR Codes:	Ford Motor Co	30
SHITED STATES		ntainer ID / FTAG:				Config #:	U4U327-39	30
2 D	rue cu					S. Seller and S. M.		
				7-15 ppm Sulfur		Transmission:		
				er (w/o Can Load)		Shift Schedule:	Latination Control of the Control of	
Tay most	FE C	alculation Method:	Diesel			Beginning Odometer:		
C PHU!		Pretest Remarks:				Drive Schedule:		
		Drive Axle:	AWD			Soak Period:	14.0 hours	
as Data	NIDO	TUCALITUC		Nou	000	CVI	NMHC	
ag Data hase 1	N20 (ppm)	THC / IntTHC (ppmC)	(ppm)	(ppm)	CO2 (%)	<u>CH4</u> (ppm)	(ppmC)	
							(ppine)	
Sample		The state of the s	71.656	4.829	0.899			
Ambient	1000000		0.329	0.019	0.046			
let Concentration	0.438	12.783 / 13.229	71.350	4.811	0.857	2.539	10.499	
		niemit obito						
	Remark	s: Regen during 3	ohase					
hase 2	0.000	2 047 / 2 770	0.520	0.040	0 505	2 400		
Sample			0.530	0.849	0.565			
Ambient	The second in		0.079	0.014	0.046		0.050	
Net Concentration	0.362	0.777 / 0.636	0.454	0.835	0.521	0.260	0.357	
	Remark	S:						
Phase 3	ricinari	٥,						
Sample	2.459	8.149 / 8.568	17.076	4.609	0.949	5.462		
Ambient			0.100	0.022	0.046	2.005		
Net Concentration			16.984	4.588	0.906	3.599	2.643	
	- Date -	0.00001.00019	60,000	-072.20				
	Remark	s:						
Phase 4								
Sample								
Ambient								
let Concentration								
	Remark:	s: This test has par	ticulate results.					
	C20 C012							
esults	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.038	- / 0.366	3.986	0.396	752.0	0.081	0.291	13.443
Phase 2		- / 0.028	0.040	0.109	727.6	0.013	0.016	14.028
Phase 3	0.188	- / 0.178	0.939	0.373	786.6	0.114	0.072	12.945
							NMOG=NMHC	
Weighted	0.08577		1.10631	0.24143	748.889		0.08831	A VIII TO THE PARTY OF
uel Economy	20	Diesel MPG				Dyno Settings		D329 - AWD
	Phase					Aug Brake	Inertia:	
	Phase !	2 13.98				Y	EPA Set Co A	
	Phase :						EPA Set Co B	
		12.4				4	EPA Set Co C	0.04960
	Weighter	d 13.55	-			AWD	Emiss-Bench:	May 7000

VTAURdxxx.xls

(0)				Laboratory Test				cvs
1		Test Number:	2016-0026-008	Laboratory Test	results	Vehicle ID:	FORD F250-18	84W121
Phase Phase Phase	0.193	THC / IntTHC (grams) - / 1.306 - / 0.107 - / 0.638	CO (grams) 14.225 0.154 3.359	NOx (grams) 1.413 0.418 1.336	CO2 (grams) 2683.5 2785.3 2814.6	CH4 (grams) 0.290 0.051 0.408	NMHC (grams) 1.037 0.060 0.259	Meth Response 1,075
est Conditions	Avg C D pecific Humi I CO2 CFV V	Barometer (inHg) Hell Temp (degF) Hew Point (degF) How Grains/lbm) HOX Corr Factor Dilution Factor Hox (scf @68F) HOX (scf@68F)	Phase 1 28.59 74.06 47.17 50.36 0.8962 14.758 6024.68 6047.02	Phase 2 28.59 73.99 47.27 50.55 0.8969 23.694 10271.27 10309.44	Phase 3 28.59 74.05 47.24 50.50 0.8967 14.088 5975.95 5998.26	Phase 4		
		Rate Avg (scfm)	712.56	707.63	706.93			
		Fan Placement:	Road Sneed Far	n				
	Pha	ase Time (secs) Distance (miles) vsis Time (secs)	507.30 3.569 960.3	870.90 3.828 164.4	507.20 3.578 156.1			
		IWR % diff ASCR % diff EER	FTP B1 -1.861 -1.121 -0.543	FTP B2 -0.537 -0.372 -0.513	FTP B3 -1.994 -1.280 -0.490		FTP-W -1.198 -0.687 -0.500	MFR - - -

Final Laboratory Test Results

PARTICULATE

Test Number: 2016-0026-008 Test Date: 10/29/2015

Key Start: 07:23:24 / 09:51 Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 02 CVS 75-Later (w/o Can Load) (ftp3bag)

Pretest Remarks:

Calculation Method: Diesel

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company MFR Codes: FMX

Config #: 00

Transmission: Auto Shift Schedule: A0EPA0005

Beginning Odometer: 052895.0 MI Drive Schedule: ftp3bag

Soak Period: 14.0 hours

		_					/	All filter weights are co	rrected for buoyand
Particulate	Filter		Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler		No.	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1		A	220215229	367.3839	367.3838	0.00000	0.000	0.000	
		В	220215232	359.0205	359.0212	0.00080	0.634	0.178	
		C	220215235	361.2781	361.2786	0.00050	0.408	0.114	
	Remarks:	R	egen during 3 ph	ase					
Phase 2		Α	220215230	363.7903	363.7921	0.00181	1.456	0.380	
G-ME		В	220215233	365.8989	365.8989	0.00001	0.009	0.002	
		С	220215236	364.1125	364.1132	0.00071	0.579	0.151	
j.	Remarks:								
Phase 3		A	220215231	359.4794	359.4796	0.00020	0.160	0.045	
		В	220215234	366.4285	366.4290	0.00051	0.409	0.114	
		C	220215237	360.8515	360.8521	0.00060	0.486	0.136	

Remarks:

Phase 4

Remarks:

This test has particulate results

Average Results				Net Wt	Total Mass	Total Mass	
				mg	mg	mg/mi	
Phase 1				0.00043	0.521	0.146	
Phase 2				0.00084	0.681	0.178	
Phase 3				0.00044	0.352	0.098	
		All filter weights are o	orrected for buoyancy.				
Weighted All Filters	:					0.14944	
		Tare	Gross	Net Wt	Stability Check	Dyno #:	D329 - AWD
Reference Filter Stability Che	BCK	Ture					
Reference Filter Stability Che 2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
					PASS/FAIL PASS	Inertia: EPA Set Co A:	- p. cy
2% of Avg Net or 0.01 mg		(Pre Wt)	(Post Wt)	mg			-16.94
2% of Avg Net or 0.01 mg		(Pre Wt) 365.48523	(Post Wt) 365.48524	mg 0.00001	PASS	EPA Set Co A:	-16.94 -0.5339

Page 1 of 2

VTAURdxxx xls

Print Time 04-Nov-2015 09:57

v150811 - d329

EPAVDAEm151029065353

(0)			Laboratory Te			PARTICULAT
(22)	Tant Minesham		Laboratory Test R	esults	Value ID	EODD 5350 1040434
VEIGHING CHAMBER	Test Number:		Chamber Temp	Daw Daint		FORD F250-184W121
	Buoyancy	Operator		Dew Point	Barometer	Last Change in Status
Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp
re-test 10/28/15 14:1		322990	71.8	49.7	28.48	NORM @ 10/28/15 09:58:32
ost-test 10/29/15 11:19	9 1.0003852	322990	71.4	49.5	28.63	NORM @ 10/28/15 09:58:32
est Conditions		Phase 1	Phase 2	Phase 3	Phase 4	
	Barometer (inHg)	28.59	28.59	28.59		
Avg	Cell Temp (degF)	74.06	73.99	74.05		
	Dew Point (degF)	47.17	47.27	47.24		
Specific Hui	midity (grains/lbm)	50.36	50.55	50.50		
a production	NOx Corr Factor	0.8962	0.8969	0.8967		
	Dilution Factor	14.76	23.69	14.09		
CEV	/ Vmix (scf @68F)	6024.68	10271.27	5975.95		
	ume A (scf @68F)	7.308	12.801	7.387		
	ume B (scf @68F)	7.593	12.773	7.515		
100 Date	ume C (scf @68F)	7.436	12.598	7.413		
	ume D (scf @68F)	7.430	12.550	1.415		
The second secon		7.446	12.724	7.438		
Sample Volume Av						
	Vmix (scf @68F)	6047.02	10309.44	5998.26		
	Phase Time (sec)	507.30	870.90	507.20		
	Distance (miles)	3.569	3.828	3.578		
PS	U Probe A (degC)					
PS	U Probe B (degC)					
	U Probe C (degC)					
	U Dil Air A (degC)	47.9	44.4	44.3		
	U Dil Air B (degC)	41.4	39.4	40.7		
	U Dil Air C (degC)	42.6	40.8	40.6		
	SU Filter A (degC)	45.8	46.0	47.4		
	SU Filter B (degC)	47.7	47.7	48.8		
	SU Filter C (degC)	48.5	48.5	47.9		
	U Dil Flow A (lpm)	29.9	29.9	29.7		
	U Dil Flow B (lpm)	29.9	29.9	29.7		
	J Dil Flow C (lpm)	29.9	29.9	29.7		
	A Proportionality	40.0	23,5	23.1		
	B Proportionality . C Proportionality .					
PSU	C Proportionality .					
50811 - d329	151029065353		Page 2 of 2			Print Time 04-Nov-2015 09

11/4/2015 9:57 AM

Final Laboratory Test Results

Test Number: 2016-0026-009

Vehicle ID: FORD F250-184W121

CVS

Test Information

Test Date: 10/29/2015

MFR Name Ford Motor Company MFR Codes: FMX

Key Start: 08:52:00

Fuel Container ID / FTAG: F00023 / 25330

Config #: 00

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 3 HWFET (hwfetprep_hwfet)

Transmission: Auto

FE Calculation Method: Diesel

Shift Schedule: A0EPA0011 Beginning Odometer: 052906.0 MI

Pretest Remarks:

Drive Axle: AWD

Drive Schedule: hwfetwarmup_hwfet

Bag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)
Sample	0.862	2.197 / 2.203	0.546	1.017	1.087	2.171	
Ambient	0.322	2.034	0.000	0.026	0.047	2.000	
Net Concentration	0.566	0.328 / 0.334	0.546	0.994	1.044	0.333	-0.024

Remarks:

Phase 2

Sample Ambient

Net Concentration

Remarks.

Phase 3

Sample

Ambient

Net Concentration

Remarks:

Phase 4

Sample

Ambient

Net Concentration

Remarks: This test has particulate results.

Results		N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
		(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
P	hase 1	0.024	- / 0.004	0.015	0.039	441.7	0.005	0.000	23 109

NMOG=NMHC

Dyno Settings Dyno #: D329 - AWD Diesel MPG Fuel Economy Aug Brake Inertia: 9500 Phase 1 23.03 EPA Set Co A: -16.94 EPA Set Co B: -0.5339 EPA Set Co C: 0.04960 AWD Emiss-Bench: Mexa 7200dle Print Time 04-Nov-2015 09:57

VTAURdxxx xls

v150811 - d329 EPAVDAEm151029081938

11/4/2015 9:57 AM

Page 1 of 2

	NVFEL L	aboratory T	est Data			cvs
Test Number:	Final La 2016-0026-009	boratory Test	Results	Vehicle ID:	FORD F250-1	84W121
Results N2O THC / IntTHC (grams) (grams)	CO (grams)	NOx (grams)	CO2 (grams)	CH4 (grams)	NMHC (grams)	Meth Respons
Phase 1 0.245 - / 0.046	0.150	0.404	4523.3	0.053	0.000	
est Conditions Barometer (inHg)	Phase 1 28.61	Phase 2	Phase 3	Phase 4		
Avg Cell Temp (degF)	73.92					
Dew Point (degF)						
Specific Humidity (grains/lbm) NOx Corr Factor						
CO2 Dilution Factor						
CFV Vmix (scf @68F)	8332.14					
Total CVS Vmix (scf@68F)						
CVS Flow Rate Avg (scfm)	653.42					
	Road Speed Fan					
Phase Time (secs)						
Distance (miles) Bag Analysis Time (secs)	10.240 57.5					
20.00 m	HWY					MFR
IWR % diff						
ASCR % diff EER						-
LLI	3.7,3					
50811 - d329 EPAVDAEm151029081938	Pa	age 2 of 2			Print Ti	me 04-Nov-2015 09.5

Final Laboratory Test Results

PARTICULATE

Test Information

Test Number: 2016-0026-009 Test Date: 10/29/2015

Key Start: 08:52:00 Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 3 HWFET (hwfetprep_hwfet)

Calculation Method: Diesel

Pretest Remarks:

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company MFR Codes: FMX

Config #: 00

Transmission: Auto Shift Schedule: A0EPA0011 Beginning Odometer: 052906.0 MI

Drive Schedule: hwfetwarmup_hwfet

Particulate	Filter	Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler	No.	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1	A	220215247	369.3982	369.4010	0.00281	2.086	0.204	
	В	220215248	359.2033	359,2029	0.00000	0.000	0.000	
	C	220215249	365.9509	365.9513	0.00040	0.299	0.029	

Remarks:

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass
	mg	mg	mg / mi
Phase 1	0,00107	1.193	0.116

All filter weights are corrected for buoyancy.

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	7.4	D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	4 4 4 4 4
0.01	1	365.48542	365.48552	0.00010	PASS	EPA Set Co A:	
	2	365.77353	365.77293	-0.00060	PASS	EPA Set Co B:	-0.5339
PM Media MTL PTFE PFA						EPA Set Co C:	0.04960
Mile 13/12/27/7						Emissions Benc	Mexa 7200dle
v150811 - d329 EPAVDAEm15102	29081938		Page 1 of 2			Print Tim	e 04-Nov-2015 09:5

60	1			Laboratory Te			PARTICULAT
(200	2.0			Laboratory Test R	esults	100000	FORE 5050 10 MM
- C-	AULUBER	Test Number:					FORD F250-184W121
VEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp
	10/28/15 15:25	1.0003827	322990	71.9	49.6	28.47	NORM @ 10/28/15 09:58:32
ost-test	10/29/15 11:02	1.0003852	322990	71.5	49.4	28.63	NORM @ 10/28/15 09:58:32
est Condit	tions		Phase 1	Phase 2	Phase 3	Phase 4	
	Ba	arometer (inHg)	28.61				
		ell Temp (degF)	73.92				
		ew Point (degF)	47.43				
		dity (grains/lbm)	50.83				
		Ox Corr Factor	0.8980				
		Dilution Factor	12.33				
	CFV V	mix (scf @68F)	8332.14				
		e A (scf @68F)	11.281				
	INCOME TO A CONTRACT OF THE PROPERTY OF THE PR	e B (scf @68F)	11.304				
	The second secon	e C (scf @68F)	11.277				
		e D (scf @68F)	17.155				
Sam	ple Volume Avera		11.288				
Cuin		mix (scf @68F)	8366.01				
		ase Time (sec)	765.10				
		Distance (miles)	10,240				
	DSIII	Probe A (degC)					
		Probe B (degC)					
		Probe C (degC) Dil Air A (degC)	45.1				
		Dil Air B (degC)	40.4				
		Dil Air C (degC)	41.7				
			48.4				
		Filter A (degC)					
		Filter B (degC)	50.8 50.5				
		Filter C (degC)	30.5				
		Dil Flow A (Ipm)					
		Dil Flow B (Ipm)	30.2 30.1				
		Dil Flow C (lpm)	200				
		Proportionality .					
		Proportionality .					
	P50 C	Proportionality .					

11/4/2015 9:58 AM VTAURdxxxxxls

CVS

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0026-011

Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

Test Information

Test Date: 10/29/2015

Key Start: 11:10:03

Key Start: 11:10:03 Fuel Container ID / FTAG: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Test Procedure: 8.09 sc03wu_sc03

FE Calculation Method: Diesel

Pretest Remarks: Drive Axle: AWD MFR Codes: FMX Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 052940.0 MI

Drive Schedule: sc03wu_sc03

Bag Data	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	1.007	2.285 / 2.249	0.520	7.590	0.764	2.028		
Ambient	0.323	2.118	0.000	0.028	0.045	2.001		
Net Concentration	0.703	0.288 / 0.252	0.520	7.564	0.722	0.141	0.100	

Remarks:

Phase 2

Sample Ambient

Net Concentration

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample

Ambient

Net Concentration

Remarks: This test has particulate results.

Results		N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
-		(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
	Phase 1	0.069	- / 0.008	0.032	0.692	706.3	0.005	0.003	14.453

NMOG≃NMHC

Fuel Economy	Diesel MPG		Dyno Settings	Dyno #:	D329 - AWD
	Phase 1 14 41		Aug Brake	Inertia:	9500
	244200		Y	EPA Set Co A:	-16.94
				EPA Set Co B:	-0.5339
			±	EPA Set Co C:	0.04960
			AWD	Emiss-Bench:	Mexa 7200dle
v150811 - d329	EPAVDAEm151029103726	Page 1 of 2		Print Tim	e 04-Nov-2015 09 58

VTAURdxxx.xls

Phase 1 Hg) 28.65 HgF) 73.88 HgF) 46.89 HgF) 49.72 HgC 0.8938 HgF) 6710.14 HgC 1.89 HgF) 6710.14	NOx (grams) 2.467 Phase 2	CO2 (grams) 2519.2 Phase 3	Vehicle ID: CH4 (grams) 0.018	FORD F250-11 NMHC (grams) 0,011	84W121 <u>Meth Respo</u> 1.075
(grams) 3 0.116 Phase 1 Hg) 28.65 egF) 73.88 egF) 46.89 bm) 49.72 ctor 0.8938 ctor 17.530 e8F) 6710.14	(grams) 2.467	(grams) 2519.2	(grams) 0.018	(grams)	
Hg) 28.65 egF) 73.88 egF) 46.89 bm) 49.72 ctor 0.8938 ctor 17.530 e8F) 6710.14	Phase 2	Phase 3	Phase 4	-	
(8F) 6736.20 (fm) 675.52					
ent: Road Speed Fan ecs) 596.00 les) 3.567					
diff diff ER					MFR
	ecs) 596.00 les) 3.567 ecs) 85.2 diff	diff diff	diff diff	diff diff	diff diff

11/4/2015 9:58 AM

Page 2 of 2

v150811 - d329 EPAVDAEm151029103726

Print Time 04-Nov-2015 09:58

PARTICULATE

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0026-011

Vehicle ID: FORD F250-184W121

Test Information

Test Date: 10/29/2015

Key Start: 11:10:03

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 8.09 sc03wu sc03

Calculation Method: Diesel

Pretest Remarks:

MFR Name Ford Motor Company MFR Codes: FMX

Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 052940.0 MI

Drive Schedule: sc03wu_sc03

Particulate	Filter	Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler	No.	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1	A	220215253	372.8152	372.8166	0.00139	1.081	0.303	
12.00	В	220215254	372.3134	372.3140	0.00058	0.446	0.125	
	C	220215255	358.4432	358.4441	0.00084	0.656	0.184	

Remarks:

Phase 2

Remarks:

Phase 3

Remarks.

Phase 4

Remarks:

This test has particulate results.

Average Results	Net WI	Total Mass	Total Mass
	mg	mg	mg/mi
Phase 1	0.00094	0.728	0.204

All filter weights are corrected for buoyancy.

Reference Filter Stability Che	ck	Tare	Gross	Net Wf	Stability Check	Dyno #: D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia: 9500
0.01	1	365.48542	365.48528	-0.00014	PASS	EPA Set Co A: -16.94
	2	365,77353	365.77279	-0.00074	PASS	EPA Set Co B: -0.5339
PM Media		E-03 24 30				EPA Set Co C: 0.04960
MTL PTFE_PFA						The state of the s
						Emissions Bencl Mexa 7200dle
v150811 - d329 EPAVDAEm15102	29103726		Page 1 of 2			Print Time 04-Nov-2015 09:58

WEICHING	CHAMBER	Test Number: 2			Daw Balat		FORD F250-184W121
Pre-test	Timestamp 10/28/15 15:25	Buoyancy Factor 1.0003827 1.0003859	Operator (id) 322990 322990	<u>Chamber Temp</u> (°F) 71.9 71.3	Dew Point (°F) 49.6 49.5	Barometer ("Hg) 28.47 28.67	Last Change in Status Status @ timestamp NORM @ 10/28/15 09:58:32 NORM @ 10/28/15 09:58:32
		Phase 1 28.65 73.88 46.89 49.72 0.8938 17.53 6710.14 8.634 8.807 8.620 8.687 6736.20 596.00 3.567	Phase 2	Phase 3	Phase 4	TOTAL CONTROL OF THE PARTY OF T	
	PSU PSU PSU D PSU D PSU D PSU A PSU B	Filter A (degC) Filter A (degC) Filter B (degC) Filter C (degC) Flow A (lpm) Flow B (lpm) Flow C (lpm) Proportionality Proportionality Proportionality	45.6 47.7 48.5 29.5 29.5 29.5				

11/4/2015 9:58 AM

				Laboratory Te				CVS
		Test Number	Final L 2016-0026-010	aboratory Test F	tesults	Vehicle ID-	FORD F250-18	4\\\\121
est Information	_		10/29/2015		_	1.37.17.12	Ford Motor Cor	
WITED STAIR		Key Start:				MFR Codes:		30
Sall Sul	Fuel Co	ntainer ID / FTAG:				Config #:		50
\$ D	. 00, 00		19 Cert Diesel 7	15 man Cultur		Transmission:		
					0.001			
				s06warmup_2bagu		Shift Schedule:	The second street with the second	
TAL PHOTOS	FE C	alculation Method:	Diesel			Beginning Odometer:		200.00
		Pretest Remarks:	AVACES			Drive Schedule:	us06warmup_2	bagus06
		Drive Axle:	AVVD					
ag Data	N2O	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	1.431	1.749 / 1.648	0.697	40.040	1.637			
Ambient		1.912	0.004	0.373	0.053			
let Concentration			0.693	39.712	1.591	0.012	-0.013	
at consentration	1.1.1.0	0.01070.000	0.000	35.112	1.001	0.012	0.010	
hase 2	Remark	s. PSU Proportiona	ality out of CFR sp	pecifications - vari	ant test			
Sample	1.502	1.767 / 1.712	0.723	16.965	1.893	1,909		
Ambient		1.895	0.000	0.077	0.048	1.973		
Net Concentration		0.140 / 0.085	0.723	16.899	1.851	0.214	-0.145	
let Concentration	1.219	0.14070.085	0.123	10.035	1.051	0.214	-0.145	
water d	Remark	S:						
Phase 3								
Sample								
Ambient								
let Concentration								
	Remark	s:						
hase 4								
Sample								
Ambient								
let Concentration								
	Remarks	s: This test has par	ticulate results.					
esults	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.086	- / 0.000	0.033	2.815	1205.5		0.000	8.468
Phase 2	0.040	- /0.001	0.015	0.516	604.1	0.003	0.000	16.898
	3.000		70.70					
Carrier	0.05000	0.00000	0.01909	1.02454	737.214	0.00206	NMOG=NMHC 0.00000	
Composite	0.05009	0.00068 Diesel MPG	0.01909	1.02454	131.214	Dyno Settings		D329 - AWD
uel Economy	Di						Inertia:	
	Phase					Aug Brake		
	Phase !	2 16.84				Y	EPA Set Co A:	
							EPA Set Co B	
							COA C-I C- C	
						4	EPA Set Co C:	0.04960
c	omposite	e 13.81				AWD	Emiss-Bench:	

11/4/2015 9:58 AM

Test Number: 2016-0026-010 Vehicle ID: FORD F250-19	184W121 <u>Meth Respor</u> 1.075
N2O THC / IntTHC CO NOx CO2 CH4 NMHC	Meth Respon
Barometer (inHg) 28.63 28.63 Avg Cell Temp (degF) 73.92 74.04 Dew Point (degF) 46.43 47.34 Specific Humidity (grains/lbm) 48.90 50.62 NOx Corr Factor 0.8907 0.8972	
Dew Point (degF) 46.43 47.34 Specific Humidity (grains/lbm) 48.90 50.62 NOx Corr Factor 0.8907 0.8972	
Specific Humidity (grains/lbm) 48.90 50.62 NOx Corr Factor 0.8907 0.8972	
NOx Corr Factor 0.8907 0.8972	
CO2 Dilution Factor 8 183 7 079	
CFV Vmix (scf @68F) 2577.44 3904.74	
Total CVS Vmix (scf@68F) 2587 67 3920.18	
CVS Flow Rate Avg (scfm) 649.23 641.88	
Fan Placement: Road Speed Fan	
Phase Time (secs) 130.00 365.00 108.20	
Distance (miles) 1.769 6.224	
Bag Analysis Time (secs) 57.8 240.0	
US06-C US06-H US06-T	MFR
IWR % diff 0.040 -5.159 -2.490	
ASCR % diff -0.351 -3.970 -1.497 EER 0.231 -1.113 -0.682	6

v150811 - d329 EPAVDAEm151029095059 Page 2 of 5 Print Time 04-Nov-2015 09:58

Final Laboratory Test Results

PARTICULATE

Test Information

Test Number: 2016-0026-010 Test Date: 10/29/2015

Vehicle ID: FORD F250-184W121

Key Start: 10:15:18

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 89 us062bag (us06warmup_2bagus06)

Calculation Method: Diesel

Pretest Remarks:

MFR Name Ford Motor Company MFR Codes: FMX Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0041 Beginning Odometer: 052926.0 MI

Drive Schedule: us06warmup 2bagus06

						All filter weights are co	rrected for buoyand
<u>Filter</u> Sampler	Filter No.	Tare (Pre Wt)	Gross (Post Wt)	Net Wt mg	Total Mass mg	Total Mass mg / mi	Filter comment
Α	220215159	361.7224	361.7293	0.00691	5.294	0.662	
В	220215160	363.1353	363.1430	0.00770	5.809	0.727	
C	220215161	362.1477	362.1487	0.00101	0.767	0.096	
	Sampler A B	Sampler No. A 220215159 B 220215160	Sampler No. (Pre Wt) A 220215159 361.7224 B 220215160 363.1353	Sampler No. (Pre Wt) (Post Wt) A 220215159 361.7224 361.7293 B 220215160 363.1353 363.1430	Sampler No. (Pre Wt) (Post Wt) mg A 220215159 361.7224 361.7293 0.00691 B 220215160 363.1353 363.1430 0.00770	Filter Filter Tare Gross Net Wt Total Mass Sampler No. (Pre Wt) (Post Wt) mg mg A 220215159 361.7224 361.7293 0.00691 5.294 B 220215160 363.1353 363.1430 0.00770 5.809	Sampler No. (Pre Wt) (Post Wt) mg mg / mi A 220215159 361.7224 361.7293 0.00691 5.294 0.662 B 220215160 363.1353 363.1430 0.00770 5.809 0.727

Remarks:

PSU Proportionality out of CFR specifications - variant test

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass
	mg	mg	mg / mi
Phase 1	0.00521	3.957	0.495

All filter weights are corrected for buoyancy

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #:	D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.48675	365.48572	-0.00103	PASS	EPA Set Co A:	-16.94
	2	365.77337	365.77243	-0.00093	PASS	EPA Set Co B	-0.5339
PM Media MTL PTFE PFA						EPA Set Co C:	0.04960
MILE FIFE_FFA						Emissions Benc	Mexa 7200dle
v150811 - d329 EPAVDAEm15102	29095059		Page 3 of 5			Print Tim	e 04-Nov-2015 09:5

VTAURdxxx.xls

60				Laboratory Te			PARTICULA		
12	2)	Tost Number		Laboratory Test R	esults	Vehicle ID: FORD F250-184W121			
NEIGHING	CHAMBER	Buoyancy	2016-0026-010 Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status		
VEIGHING	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp		
re-test	10/27/15 9:09	1.0003954	322990	72.1	50	29.42	NORM @ 10/26/15 08:33:35		
ost-test	10/29/15 12:10	1.0003954	322990	71.7	49.7	28.64	NORM @ 10/28/15 09:58:32		
USPILIST	10/23/10 12:10	1.0003032	522550	17.116	75.1	20.04	101(W) @ 10/20/13 05/30/32		
est Cond	itions		Phase 1	Phase 2	Phase 3	Phase 4			
	В	arometer (inHg)	28.63	28.63					
		ell Temp (degF)	73.92	74.04					
	De	ew Point (degF)	46.43	47.34					
	Specific Humio	dity (grains/lbm)	48.90	50.62					
	N	Ox Corr Factor	0.8907	0.8972					
		Dilution Factor	8.18	7.08					
	CFV V	mix (scf @68F)	2577.44	3904.74					
		e A (scf @68F)	8.499	5.147					
	THE RESIDENCE OF THE PARTY OF T	e B (scf @68F)	8.625	5.148					
		e C (scf @68F)	8.546	5.143					
	The second secon	e D (scf @68F)	16.619	(2147.6					
San	ple Volume Aver		8.557	5.146					
Guil		mix (scf @68F)	2587.67	3920.18					
		ase Time (sec)	130.00	365.00	108.20				
		Distance (miles)	1.769	6.224	100.20				
	PSU	Probe A (degC)							
	PSU I	Probe B (degC)							
		Probe C (degC)							
	PSU I	Dil Air A (degC)	45.7	45.3					
		Dil Air B (degC)	40.9	40.7					
		Dil Air C (degC)	42.3	42.0					
		Filter A (degC)	47.8	47.9					
		Filter B (degC)	48.7	48.5					
		Filter C (degC)	49.2	48.8					
		Dil Flow A (lpm)	29.1	28.8					
		Dil Flow B (Ipm)	29.1	28.8					
		Dil Flow C (lpm)	29.1	28.8					
		Proportionality	20.1	20.0					
		Proportionality							
		Proportionality							
	FSUC	Proportionality							
50811 - d32	9 EPAVDAEm151	029095059		Page 4 of 5			Print Time 04-Nov-2015 0		

11/4/2015 9:58 AM

			NVFEL L	aboratory To	est Data			cvs
				boratory Test	Results	State of the last		
			2016-0026-016				FORD F250-184	
est Information	19-11		11/10/2015				Ford Motor Com	
SMITED STATES			09:41:07 / 10:06			MFR Codes:		30
(T)	Fuel Cont	ainer ID / FTAG:				Config #:		
		The second second	19 Cert Diesel 7-			Transmission		
			02 CVS 75-Later	(w/o Can Load)		Shift Schedule	1,150,000,000,000,000	
The well	FE Cal	culation Method:	Diesel			Beginning Odometer:	The state of the s	
HOUSE	P	retest Remarks:				Drive Schedule:		
		Drive Axle:	AWD			Soak Period	17.9 hours	
Dan Data	NICO	THE LINTHE	20	NOv	000	CHA	NMHC	
Phase 1	N20	THC / IntTHC	CO	NOx	CO2 (%)	CH4	Terrorian and the same of the	
	(ppm)	(ppmC)	(ppm)	(ppm)		(ppm)	(ppmC)	
Sample	3 A Z / M / I	17 178 / 20,334	61,340	7,645	0.932			
Ambient		2.393	0.168	0.015	0.045	2556.0	10.104	
Net Concentration	0.579	14.953 / 18.109	61.184	7,631	0.891	1,808	16.165	
	Remarks							
Phase 2	Kemarks							
Sample	0.770	3,241 / 2,786	0.504	1.251	0.574	2,233		
Ambient	100	2.380	0.068	0.012	0.045			
Net Concentration		0.963 / 0.509	0.440	1.240	0.530		0.206	
		6355 . 5000						
	Remarks							
Phase 3		0 000 10 001				0.141		
Sample		3.550 / 3.501	13,178	3.989	0,774			
Ambient	31230	2.305	0.047	0.013	0.045			
Net Concentration	0.664	1.378 / 1.329	13.133	3.977	0.732	0.559	0.728	
HU LOUIS A	Remarks							
Phase 4								
Sample								
Ambient								
Net Concentration								
	Remarks	This test has pa	rticulate results					
Results	N2O	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Val MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)		(gpm)	(mpg)
Phase 1		- / 0.488	3.328	0.611	761.1		0.435	13.294
Phase 2		- / 0.022	0.038	0.158	719.8	12 FE 2017	0.009	14.181
Phase 3		- / 0.036	0.711	0.317	622.3		0.020	16.373
1 11000	2.000		2.7.7.1	2.21	-	3,27		
Weighted	0.05832	0.12216	0.90443	0.29515	701.57	6 0.02366	0.10017	
Fuel Economy		Diesel MPG				Dyno Settings		D329 - AWD
	Phase 1	13.25				Aug Brake	Inertia:	
	Phase 2					Y	EPA Set Co A	-16.94
	Phase 3						EPA Set Co B	-0.5339
							EPA Set Co C	0.04960
		44.10				AWD	Emiss-Bench:	Mays 7200dl
	Weighted	14.46				AVVU	EIIIISS-DEIICII	Wexa / 2000

11/17/2015 1:45 PM VTAURdxxx.xis

2	2			Final L	Laboratory Test F				cvs	
1	ne of		Test Number: 2				Vehicle ID:	FORD F250-184W121		
Results	Phase 1 Phase 2 Phase 3	N2O (grams) 0.177 0.241 0.201	THC / IntTHC (grams) - / 1.742 - / 0.084 - / 0.127	CO (grams) 11.886 0.146 2.535	NOx (grams) 2 181 0.605 1.129	CO2 (grams) 2718.7 2763.3 2219.3	CH4 (grams) 0.201 0.053 0.062	NMHC (grams) 1.555 0.034 0.070	Meth Response	
Test Co	nditions	Avg C	Barometer (inHg)	Phase 1 29.14 74.05 47.83	Phase 2 29.14 74.00 47.26	Phase 3 29.13 74.04 47.80	Phase 4			
	Spe	ecific Hum	Dew Point (degF) Idity (grains/lbm) NOx Corr Factor	50.66 0.8974	49.57 0.8932	50.63 0.8972				
		CO	2 Dilution Factor Vmix (scf @68F)	14.254 5866.47	23.333 10006.06	17.269 5825.15				
	7		Vmix (scf@68F)	5892.29	10055.53	5854.11				
		CVS Flow	Rate Avg (scfm)	693,98	689.12	689.23				
			Fan Placement: R			Tare W.				
			Distance (miles) lysis Time (secs)	507.20 3.572 954.3	871.20 3.839 158.1	507.10 3.566 158.8				
		Day Alla	yais fille (accs)	554.5	136.1	130.0				
			IWR % diff	FTP B1 -1.453 -0.466	FTP B2 0.319 0.378	FTP B3 -1.208 -0.476		FTP-W -0.452 0.059	MFR	
			EER	-0.596	0.500	-0.476		-0.038		

v150811 - d329___EPAVDAEm151110092139 Page 2 of 2 Print Time 17-Nov-2015 13:45

11/17/2015 1:45 PM VTAURdxxx xls

Final Laboratory Test Results

Vehicle ID: FORD F250-184W121

PARTICULATE

Test Number 2016-0026-016 Test Date: 11/10/2015 Key Start: 09:41:07 / 10:06

Pretest Remarks:

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 02 CVS 75-Later (w/o Can Load) (ftp3bag) Calculation Method: Diesel

Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 052973.0 MI Drive Schedule: ftp3bag

MFR Name Ford Motor Company

Soak Period 17.9 hours

MFR Codes: FMX

Config #: 00

Particulati	Filter		Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler		No	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1	0.00	A	220215331	368,7616	368.7620	0.00032	0.257	0.072	
0.000		B	220215334	366.7988	366.7996	0.00083	0.446	0.125	
		C	220215337	365.3697	365,3714	0.00173	1.374	0.385	
F	Remarks:								
Phase 2		A	220215332	367.6082	367,6087	0.00053	0.415	0.108	
200		В	220215335	367.7732	367.7751	0.00183	0.767	0.200	
		C	220215338	363 1279	363.1302	0.00224	1.767	0.460	
f	Remarks:								
Phase 3		A	220215333	367.7275	367.7257	0.00000	0.000	0.000	
		В	220215336	361.5208	361,5238	0.00304	1.252	0.351	
		C	220215339	363,2575	363.2606	0.00314	2.501	0.701	

Remarks.

Phase 4

Remarks:

This test has particulate results.

Net Wt		Total Mass	
mg	mg	mg / mi	
0.00096	0.692	0.194	
0.00153	0.983	0.256	
0.00206	1.876	0.526	
	mg 0.00096 0.00153	mg mg 0.00096 0.692 0.00153 0.983	mg mg mg / mi 0.00096 0.692 0.194 0.00153 0.983 0.256

All filter weights are corrected for buoyancy.

Weighted All Filters	5					0.31727	
Reference Filter Stability Che	eck	Tare	Gross	Net Wt	Stability Check	Dyno #	D329 - AWD
2% of Avg Net or 0.01 mg	No	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.48995	365.48948	-0.00047	PASS	EPA Set Co A:	-16.94
	2	365.77426	365.77249	-0.00177	PASS	EPA Set Co B:	-0.5339
PM Media MTL PTFE PFA						EPA Set Co C:	0.04960
1004 (1192) (11)						Emissions Benc	Mexa 7200dle
v150811 - d329EPAVDAEm1511	10092139		Page 1 of 2			Print Tim	e 17-Nov-2015 13:45

60	1			Laboratory Te			PARTICULATI
2	2,1	2 3 2 2 2 2		Laboratory Test R	esults	· residence	Appropriate Comments
8000	9	Test Number	SAC DELCTED THE THE			Vehicle ID:	FORD F250-184W121
VEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
The state of	Timestamp	Factor	(id)	(*F)	("F)	("Hg)	Status @ timestamp
re-test	11/9/15 13:36	1.0003940	322990	71.6	49.7	29 29	NORM @ 11/06/15 20:40:22
ost-test	11/10/15 12:04	1.0003913	322990	71.5	49.6	29.09	NORM @ 11/06/15 20:40:22
est Condi	itions		Phase 1	Phase 2	Phase 3	Phase 4	
	B	Barometer (inHg)	29.14	29.14	29.13		
	Avg C	ell Temp (degF)	74.05	74.00	74.04		
	D	lew Point (degF)	47.83	47.26	47.80		
	Specific Humi	dity (grains/lbm)	50.66	49.57	50.63		
		NOx Corr Factor	0.8974	0.8932	0.8972		
		Dilution Factor	14.25	23.33	17.27		
	CFV	/mix (scf @68F)	5866.47	10006.06	5825.15		
		ne A (scf @68F)	7.427	12.762	7.371		
		ne B (scf @68F)	10,958	23.964	14.239		
		ne C (scf @68F)	7.437	12.746	7.351		
		ne D (scf @68F)	111.00	0.00	1166		
San	nple Volume Ave		8.607	16.491	9.653		
Out		/mix (scf @68F)	5892.29	10055 53	5854.11		
		hase Time (sec)	507.20	871.20	507.10		
		Distance (miles)	3.572	3 839	3.566		
	PSU	Probe A (degC)					
	PSU	Probe B (degC)					
		Probe C (degC)					
		Dil Air A (degC)	45.1	45.2	44.5		
		Dil Air B (degC)	42.7	39.9	40.6		
	PSU	Dil Air C (degC)	41.2	41.6	40.5		
	PSI	J Filter A (degC)	45.8	46.0	47.3		
	PSI	J Filter B (degC)	47.8	48.4	49.2		
	PSI	J Filter C (degC)	49.1	49.1	48.1		
	PSU	Dil Flow A (Ipm)	29.9	29.9	29.7		
	PSU	Dil Flow B (lpm)	29.9	29.9	29.7		
	PSU	Dil Flow C (Ipm)	29.8	29.9	29.6		
	PSU	A Proportionality	1				
	PSU!	B Proportionality					
		C Proportionality					
		5.1 mg C - 2 mg mg					
150811 - d32	29 EPAVDAEm15	11140000100		Page 2 of 2			Print Time 17-Nov-2015 13

11/17/2015 1:45 PM VTAURdxxx.xls

Final Laboratory Test Results

Test Number: 2016-0026-018

Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

CVS

Test Information

Test Date: 11/10/2015 Key Start 11:30:05

Fuel Container ID / FTAG: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Test Procedure: 3 HWFET (hwfetprep_hwfet) FE Calculation Method. Diesel

Pretest Remarks: Drive Axle: AWD

MFR Codes: FMX Config #: 00 Transmission: Auto

Shift Schedule: A0EPA0011 Beginning Odometer: 052984.0 MI

Drive Schedule: hwfetwarmup_hwfet

Bag Data Phase 1	(ppm)	THC / IntTHC (ppmC)	CO (ppm)	NOx	CO2 (%)	CH4	NMHC (ppmC)	
riidse i	(bhin)	(ppine)	(bhu)	(ppm)	1,401	(ppm)	(ppine)	
Sample	0.767	2.508 / 2.475	0.578	0.877	1.016	2.200		
Ambient	0.326	2,312	0.035	0.014	0.045	2.033		
Net Concentration	0.466	0.372 / 0.338	0.546	0.864	0.974	0.321	-0.008	

Remarks

Phase 2

Sample

Ambient Net Concentration

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample

Ambient

Net Concentration

Remarks: This test has particulate results.

Results		N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
		(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
	Phase 1	0.021	- / 0.005	0.015	0.036	430.8	0.005	0.000	23.694

NMOG=NMHC

Fuel Economy	Diesel MPG	Dyno Settings	Dyno #	D329 - AWD
Phas	1 23.62	Aug Brake	Inertia:	9500
		Y	EPA Set Co A	-16.94
			EPA Set Co B	-0.5339
			EPA Set Co C	0.04960
		AWD	Emiss-Bench:	Mexa 7200dle
v160811 d329 EPAVDAE	n151110110653 Page † of 2		Print Tin	ne 17-Nov-2015 13 4

11/17/2015 1:45 PM VTAURdxxx.xls

Barometer (inHg) G Cell Temp (degF) Dew Point (degF) Mox Corr Factor CO2 Dilution Factor V Vmix (scf @68F)	Final Lal 2016-0026-018 CO (grams) 0.157 Phase 1 29.13 73.94 47.78 50.57	NOx (grams) 0.366		Vehicle ID: CH4 (grams) 0.053	FORD F250-1: NMHC (grams) 0.000	Meth Respons 1.075
Barometer (inHg) G Cell Temp (degF) Dew Point (degF) Mox Corr Factor CO2 Dilution Factor V Vmix (scf @68F)	CO (grams) 0.157 Phase 1 29.13 73.94 47.78 50.57 0.8970 13.186 8683.17	(grams) 0.366	(grams) 4403.6	<u>CH4</u> (grams) 0.053	NMHC (grams)	Meth Respons
Barometer (inHg) g Cell Temp (degF) Dew Point (degF) midity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf @68F)	Phase 1 29.13 73.94 47.78 50.57 0.8970 13.186 8683.17	(grams) 0.366	(grams) 4403.6	(grams) 0.053	(grams)	Meth Respons
Barometer (inHg) g Cell Temp (degF) Dew Point (degF) midity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F)	Phase 1 29.13 73.94 47.78 50.57 0.8970 13.186 8683.17	0.366	4403.6	0.053		1.075
Barometer (inHg) g Cell Temp (degF) Dew Point (degF) amidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf @68F)	Phase 1 29.13 73.94 47.78 50.57 0.8970 13.186 8683.17				0.000	
g Cell Temp (degF) Dew Point (degF) umidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf @68F)	29.13 73.94 47.78 50.57 0.8970 13.186 8683.17	Phase 2	Phase 3	Phase 4		
g Cell Temp (degF) Dew Point (degF) umidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf @68F)	73.94 47.78 50.57 0.8970 13.186 8683.17					
Dew Point (degF) amidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf@68F)	47.78 50.57 0.8970 13.186 8683.17					
midity (grains/lbm) NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf@68F)	50.57 0.8970 13.186 8683.17					
NOx Corr Factor CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf@68F)	0.8970 13.186 8683.17					
CO2 Dilution Factor V Vmix (scf @68F) /S Vmix (scf@68F)	13.186 8683.17					
V Vmix (scf @68F) /S Vmix (scf@68F)	8683.17					
/S Vmix (scf@68F)						
w Rate Avg (scfm)	E4 # 5 220					
in held trig (gally)	680.94					
Fan Placement.						
	10.222					
nalysis Time (secs)	57.8					
	HWY					MFR
IWR % diff						-
						*
EER	-0.992					2
	Fan Placement, Phase Time (secs) Distance (miles) nalysis Time (secs)	Fan Placement: Road Speed Fan Phase Time (secs) 765.10 Distance (miles) 10.222 nalysis Time (secs) 57.8 IWR % diff -3.573 ASCR % diff -3.059	Fan Placement: Road Speed Fan Phase Time (secs) 765.10 Distance (miles) 10.222 nalysis Time (secs) 57.8 HWY IWR % diff -3.573 ASCR % diff -3.059	Fan Placement: Road Speed Fan Phase Time (secs) 765.10 Distance (miles) 10.222 nalysis Time (secs) 57.8 HWY IWR % diff -3.573 ASCR % diff -3.059	Fan Placement: Road Speed Fan Phase Time (secs) 765.10 Distance (miles) 10.222 nalysis Time (secs) 57.8 HWY IWR % diff -3.573 ASCR % diff -3.059	Fan Placement: Road Speed Fan Phase Time (secs) 765.10 Distance (miles) 10.222 nalysis Time (secs) 57.8 HWY IWR % diff -3.573 ASCR % diff -3.059

11/17/2015 1:45 PM VTAURdxxx.xls

Print Time 17-Nov-2015 13:45

Page 2 of 2

EPAVDAEm151110110653

v150811 - d329

Final Laboratory Test Results

PARTICULATE

Test Information

Test Number: 2016-0026-018 Test Date: 11/10/2015 Key Start: 11:30:05

Fuel Container ID F00023 / 25330 Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 3 HWFET (hwfetprep_hwfet)

Calculation Method: Diesel

Pretest Remarks:

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company MFR Codes FMX

Config # 00 Transmission: Auto

Shift Schedule: A0EPA0011 Beginning Odometer: 052984.0 MI

Drive Schedule: hwfetwarmup_hwfet

								All filter weights are co	rrected for buoyanc
Particulati	Filter		Fifter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler		No.	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1		A	220215323	360.7570	360.7621	0.00508	3.972	0.389	
		В	220215324	360.6551	360 6603	0.00518	2.178	0.213	
		C	220215325	362,9660	362,9659	0.00000	0.000	0 000	

Remarks:

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass	
	mg	mg	mg / mi	
Phase 1	0.00342	3.075	0.301	

All filter weights are corrected for buoyancy.

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #: D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia: 9500
0.01	1	365.48984	365.48970	-0.00014	PASS	EPA Set Co A: -16.94
	2	365.77455	365.77441	-0.00014	PASS	EPA Set Co B: -0.5339
PM Media MTL PTFE PFA						EPA Set Co C: 0.04960
						Emissions Benc Mexa 7200dle
v150811 - d329 EPAVDAEm15111	0110653		Page 1 of 2			Print Time 17-Nov-2015 13:45

11/17/2015 1:45 PM VTAURdxxx xis

60				L Laboratory Te			PARTICULATE
200	2,1	STORMAN		Laboratory Test R	esults	4.00	ESCENTIST VALUE
100	6	Test Number					FORD F250-184W121
VEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status
	Timestamp	Factor	(id)	(*F)	(°F)	("Hg)	Status @ timestamp
re-test	11/9/15 13:54	1 0003943	322990	71.2	49.5	29,28	NORM @ 11/06/15 20:40:22
ost-test	11/10/15 13:46	1,0003911	322990	71.5	49.6	29.07	NORM @ 11/06/15 20:40:22
est Condi	tions		Phase 1	Phase 2	Phase 3	Phase 4	
	В	larometer (inHg)	29.13	49000			
		ell Temp (degF)	73.94				
		ew Point (degF)	47.78				
	A STATE OF THE STA	dity (grains/lbm)	50.57				
		NOx Corr Factor	0.8970				
		Dilution Factor	13.19				
	CEVI	/mix (scf @68F)	8683.17				
		ne A (scf @68F)	11.157				
		ne B (scf @68F)	20.744				
		ne C (scf @68F)	11.150				
-	The state of the s	ne D (scf @68F)	20.200				
San	nple Volume Ave		14.350				
		/mix (scf @68F)	8726.22				
		hase Time (sec)	765.10				
		Distance (miles)	10.222				
	PSU	Probe A (degC)					
	PSU	Probe B (degC)					
	PSU	Probe C (degC)					
	PSU	Dil Air A (degC)	43.8				
	PSU	Dil Air B (degC)	39.8				
	PSU	Dil Air C (degC)	40.3				
		J Filter A (degC)	47.3				
		Filter B (degC)	51.0				
		J Filter C (degC)	50.3				
		Dil Flow A (Ipm)	29.8				
		Dil Flow B (Ipm)	29.8				
		Dil Flow C (Ipm)	29.7				
		A Proportionality	20.7				
		B Proportionality					
		C Proportionality					
	FSU	Proportionality					
150811 - 032	9 EPAVDAEm15	1110110002		Page 2 of 2			Print Time 17-Nov-2015 13

11/17/2015 1:45 PM VTAURdxxx xls

CVS

30

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number 2016-0026-020

Vehicle ID: FORD F250-184W121

Test Information

Test Date: 11/10/2015 Key Start: 14:17:57

MFR Name Ford Motor Company MFR Codes: FMX

Fuel Container ID / FTAG: F00023 / 25330 Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur

Config #: 00 Transmission: Auto

Test Procedure: 8.09 sc03wu sc03 FE Calculation Method: Diesel

Shift Schedule: A0EPA0005 Beginning Odometer 053019.0 MI

Pretest Remarks:

Drive Axle: AWD

Drive Schedule: sc03wu_sc03

Bag Data	N20	THC / IntTHC	CO	NOx	COZ	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	0.728	2.610 / 2.499	0,433	4.656	0.491	2.100		
Ambient	0.328	2.315	0.069	0.021	0.044	2.085		
Net Concentration	0.411	0.380 / 0.269	0.367	4.636	0.449	0.092	0.170	

Remarks:

Phase 2

Sample

Ambient

Net Concentration

Remarks.

Phase 3

Sample

Ambient

Net Concentration

Remarks:

Phase 4

Sample

Ambient

Net Concentration

Remarks. This test has particulate results.

Results	N20	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
1000	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.060	- / 0.012	0.034	0.630	652.6	0.005	0.008	15.641

NMOG=NMHC

Fuel Economy	Diesel MPG		Dyno Settings	Dyno #.	D329 - AWD
	Phase 1 15.59		Aug Brake	Inertia:	9500
			Y	EPA Set Co A:	-16.94
				EPA Set Co B:	-0.5339
			1	EPA Set Co C:	0.04960
			AWD	Emiss-Bench:	Mexa 7200dle
V150811 - d329 EPA	VDAEm151110134617	Page 1 of 2		Print Tim	ne 17-Nov-2015 13:4

11/17/2015 1:46 PM VTAURdxxx.xls

_	-6	il e	56	-
6	٠.	_		5
ø.	2	ы	L	۸
м	6	9	2	1
- 76	•	-	•	в

CVS

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

	Test Number:	2016-0026-020			Vehicle ID:	FORD F250-1	84W121
-	THE CLATHE	00	NO	000	CILLA	101110	44.45

Results N20 Meth Response THC / IntTHC NOx CH4 NMHC CO CO2 (grams) (grams) (grams) (grams) 1.075 (grams) (grams) (grams) Phase 1 0.213 - / 0.044 0.121 2.244 2325.1 0.017 0.028

 Test Conditions
 Phase 1
 Phase 2
 Phase 3
 Phase 4

 Barometer (inHg)
 29.08

Avg Cell Temp (degF) 74.06

Dew Point (degF) 47.44

Specific Humidity (grains/lbm) 50.01

NOx Corr Factor 0.8949

CO2 Dilution Factor 27.250

CFV Vmix (scf @68F) 9954.50

Total CVS Vmix (scf@68F) 9988.33

CVS Flow Rate Avg (scfm) 1002.13

Fan Placement: Road Speed Fan

Phase Time (secs) 596.00
Distance (miles) 3.563
Bag Analysis Time (secs) 168.1

IWR % diff ASCR % diff EER MFR

v150811+d329 EPAVDAEm151110134617

Page 2 of 2

Print Time 17-Nov-2015 13 46

PARTICULATE

30

Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0026-020

Vehicle ID: FORD F250-184W121 MFR Name Ford Motor Company

Test Date: 11/10/2015 Key Start: 14:17:57

Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 8.09 sc03wu_sc03

Calculation Method: Diesel

Pretest Remarks:

MFR Codes: FMX
Config # 00
Transmission: Auto

Shift Schedule: A0EPA0005 Beginning Odometer: 053019.0 MI

Drive Schedule: sc03wu_sc03

							All filter weights are co	rrected for buoyana
Particulate	Filter Sampler	Filter No.	Tare (Pre Wt)	Gross (Post Wt)	Net Wt mg	Total Mass mg	Total Mass mg / mi	Filter
Phase 1	1	220215343	364.8195	364.8224	0.00289	3.332	0.935	Section 1
-	E	220215344	367 3810	367.3800	0.00000	0.000	0.000	
		220215345	365,3926	365.3914	0.00000	0.000	0.000	

Remarks:

Phase 2

Remarks:

Phase 3

Remarks:

Phase 4

Remarks

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass
	mg	mg	mg / mi
Phase 1	0 00096	3.332	0.935

All filter weights are corrected for buoyancy

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #:	D329 - AWD
2% of Avg Net or 0.01 mg	No.	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.49038	365.48937	-0.00101	PASS	EPA Set Co A:	-16.94
-4-1	2	365.77459	365,77398	-0.00061	PASS	EPA Set Co B:	-0.5339
PM Media						EPA Set Co C	0.04960
MTL PTFE_PFA						Emissions Benc	Mexa 7200dle
v150811 - d329 EPAVDAEm15111	0134617		Page 1 of 2			Print Tirr	e 17-Nov-2015 13:46

11/17/2015 1:46 PM VTAURdxxx xls

	The second			Laboratory Tes			PARTICULAT
(2	inal Laborate	Test Number: 2	- NOTE: Varia 016-0026-020	ance from CFR pro	cedures per OE		October 2015 FORD F250-184W121
WEIGHING Pre-test Post-test	G CHAMBER Timestamp 11/9/15 14:04 11/10/15 15:48	Buoyancy Factor 1 0003941 1 0003908	Operator (id) 322990 322990	Chamber Temp (°F) 71,3 71.9	Dew Point (°F) 49.4 49.6	Barometer ("Hg) 29.28 29.06	Last Change in Status Status @ timestamp NORM @ 11/06/15 20:40:22 NORM @ 11/06/15 20:40:22
Test Cond	Specific Humin Sample Volum Sample Volum Sample Volum Sample Volum Sample Volum PSU	larometer (inHg) ell Temp (degF) ew Point (degF) dity (grains/lbm) NOx Corr Factor Dilution Factor /mix (scf @68F) ne A (scf @68F) ne B (scf @68F) ne C (scf @68F) ne D (scf @68F)	Phase 1 29 08 74 06 47 44 50 01 0 8949 27 25 9954 50 8 669 16 475 8 688 11 277 9988 33 596 00 3 563 43.9 39.5 40.5 45.5 48.6 48.4 29.7 29.7 29.7	Phase 2	Phase 3	Phase 4	NORM @ 11/06/15 20:40:22

11/17/2015 1:46 PM VTAURdxxx.xls

Page 2 of 2

Print Time 17-Nov-2015 13:46

v150811 - d329 EPAVDAEm151110134617

				Laboratory Test				cvs
		Test Number	2016-0026-019	aboratory Test Resi	ults	Vehicle ID	FORD F250-184	10/121
Test Information	Fuel Conta	Test Date: Key Start iner ID / FTAG:	11/10/2015	15 ppm Sulfur			Ford Motor Con FMX 00	
MAI PROTECT	FE Calc		89 us062bag (us Diesel	06warmup_2bagus00		Shift Schedule: Beginning Odometer Drive Schedule:	053004.0 MI	pagus06
Bag Data	N2O	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	_
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample		2.223 / 2.058	0.660	21.905	1.083	1.878		
Ambient		2.203	0.137	0.085	0.045	2.051		
Net Concentration	0.612	0.198 / 0.033	0.534	21,827	1.042	0.000	0.033	
	Remarks	Variant Test						
Phase 2	, ionianio	TOTAL TOTAL						
Sample		2.116/2.052	0.698	9.558	1.209	1.966		
Ambient		2,206	0.115	0.038	0.046	2.066	10010	
Net Concentration	0.556	0.109 / 0.045	0.594	9.524	1.167	0.086	-0.048	
	Remarks:							
Phase 3								
Sample Ambient Net Concentration								
Phase 4	Remarks:							
Sample Ambient								
Net Concentration								
	Remarks	This test has pa	rticulate results.					
Results	N2O	THC / IntTHC	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1		- / 0,001	0.039	2.358	1198.9		0.001	8.515
	0.027	- / 0.001	0.019	0.442	576.7	0.002	0.000	17 700
Phase 2								
Phase 2 Composite		0.00081	0.02317	0.86268	713.293	3 0,00122	NMOG=NMHC 0.00027	
Composite	0.03690	Diesel MPG	0.02317	0.86268	713.293	Dyno Settings	0.00027	D329 - AWD
			0.02317	0.86268	713.293		0.00027 Dyno #: Inertia: EPA Set Co A:	9500 -16.94
Composite	0.03690 Phase 1	Diesel MPG 8.49	0.02317	0.86268	713.29	Dyno Settings Aug Brake	0.00027 Dyno #: Inertia:	9500 -16.94 -0.5339

11/17/2015 1:45 PM VTAURdxxx.xls

Page 1 of 2

Pont Time 17-Nov-2015 13:45

v150811 - d329 EPAVDAEm151110125226

Test Number: O THC / IntTHC (grams) 23 - / 0.002 71 - / 0.004 Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF) Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf @68F) Flow Rate Avg (scfm) Fan Placement	2016-0026-019 CO (grams) 0.068 0.116 Phase 1 29.09 73.91 48.00 51.09 0.8990 12.368 3869.78 3883.08 977.22	NOx (grams) 4 123 2.747 Phase 2 29.09 74.00 47.91 50.90 0.8983 11.085 5909.20 5929.59 971.64	CO2 (grams) 2095.9 3584.5	Vehicle ID: CH4 (grams) 0.000 0.010 Phase 4	FORD F250-1 NMHC (grams) 0.002 0.000	Meth Response 1 075
Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF) Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	CO (grams) 0.068 0.116 Phase 1 29.09 73.91 48.00 51.09 0.8990 12.368 3869.78 3883.08	Phase 2 29,09 74,00 47,91 50,90 0,8983 11,085 5909,20 5929,59	(grams) 2095.9 3584.5	CH4 (grams) 0.000 0.010	(grams) 0.002	Meth Response
Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF) Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	(grams) 0.068 0.116 Phase 1 29.09 73.91 48.00 51.09 0.8990 12.368 3869.78 3883.08	Phase 2 29,09 74,00 47,91 50,90 0,8983 11,085 5909,20 5929,59	(grams) 2095.9 3584.5	(grams) 0.000 0.010	(grams) 0.002	
Avg Cell Temp (degF) Dew Point (degF) Humidity (grains/lbm) NOX Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	29.09 73.91 48.00 51.09 0.8990 12.368 3869.78 3883.08	29,09 74,00 47,91 50,90 0,8983 11,085 5909,20 5929,59	Phase 3	Phase 4		
Dew Point (degF) Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	48.00 51.09 0.8990 12.368 3869.78 3883.08 977.22	47.91 50.90 0.8983 11.085 5909.20 5929.59				
Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	51.09 0.8990 12.368 3869.78 3883.08 977.22	50 90 0.8983 11.085 5909.20 5929.59				
NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	0.8990 12.368 3869.78 3883.08 977.22	0.8983 11.085 5909.20 5929.59				
CO2 Dilution Factor CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	12.368 3869.78 3883.08 977.22	11.085 5909.20 5929.59				
CFV Vmix (scf @68F) CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	3869.78 3883.08 977.22	5909.20 5929.59				
CVS Vmix (scf@68F) Flow Rate Avg (scfm) Fan Placement	3883.08 977.22	5929.59				
Fan Placement		971.64				
			129.59			
Phase Time (secs)	130.00	364.90	107.60			
Distance (miles)	1.748	6.215				
Analysis Time (secs)	100.6	282.2				
114 m At 174	US06-C	US06-H			US06-T	MFR
		-13,755				2
LLIV	-0.001	-2.000			-2.000	-
	IWR % diff ASCR % diff EER	IWR % diff -0.761 ASCR % diff -0.586	IWR % diff -0.761 -13.755 ASCR % diff -0.586 -10.288	IWR % diff -0.761 -13.755 ASCR % diff -0.586 -10.288	IWR % diff -0.761 -13.755 ASCR % diff -0.586 -10.288	IWR % diff -0.761 -13.755 -7.084 ASCR % diff -0.586 -10.288 -3.659

11/17/2015 1:45 PM VTAURdxxx.xls

Print Time 17-Nov-2015 13:45

Page Z of Z

v150811 - d329

EPAVDAEm151110125226

Final Laboratory Test Results

Test Number: 2016-0026-019 Test Date: 11/10/2015

Key Start: 13:20:54 Fuel Container ID: F00023 / 25330

Fuel Type: 19 Cert Diesel 7-15 ppm Sulfur Test Procedure: 89 us062bag (us06warmup_2bagus06)

Calculation Method: Diesel

Pretest Remarks:

PARTICULATE

Vehicle ID: FORD F250-184W121

MFR Name Ford Motor Company MFR Codes: FMX Config # 00

Transmission: Auto Shift Schedule: A0EPA0041 Beginning Odometer: 053004.0 MI

Drive Schedule: us06warmup_2bagus06

								All filter weights are con	rrected for buoyand
Particulate	Filter		Filter	Tare	Gross	Net Wt	Total Mass	Total Mass	Filter
	Sampler		No.	(Pre Wt)	(Post Wt)	mg	mg	mg / mi	comment
Phase 1		A	220215340	365.6795	365.6813	0.00188	2.127	0.267	
	110	В	220215341	363.1937	363 1945	0.00078	0.467	0.059	
	10.9	C	220215342	364.6151	364.6181	0.00298	3.390	0.426	

Remarks:

Variant Test

Phase 2

Test Information

Remarks:

Phase 3

Remarks:

Phase 4

Remarks:

This test has particulate results.

Average Results	Net Wt	Total Mass	Total Mass
The state of the s	mg	mg	mg / mi
Phase 1	0.00188	1.995	0.250

All filler weights are corrected for buoyancy

Reference Filter Stability Che	ck	Tare	Gross	Net Wt	Stability Check	Dyno #:	D329 - AWD
2% of Avg Net or 0.01 mg	No	(Pre Wt)	(Post Wt)	mg	PASS/FAIL	Inertia:	9500
0.01	1	365.49038	365.48946	-0.00093	PASS	EPA Set Co A.	-16.94
	2	365.77459	365,77407	-0.00053	PASS	EPA Set Co B:	-0.5339
PM Media						EPA Set Co C:	0.04960
MTL PTFE PFA							
						Emissions Benc	Mexa 7200dle
v150811 + d329 EPAVDAEm15111	10125228		Page 1 of 2			Print Tim	e 17-Nov-2015 13:41

11/17/2015 1:45 PM VTAURdxxx.xis

60				L Laboratory Te			PARTICULATI	
2	2)			Laboratory Test R		L LUBS STATE COMMONDO		
Birm	9	Test Number: 2	2016-0026-019			Vehicle ID:	FORD F250-184W121	
VEIGHING	CHAMBER	Buoyancy	Operator	Chamber Temp	Dew Point	Barometer	Last Change in Status	
	Timestamp	Factor	(id)	(°F)	(°F)	("Hg)	Status @ timestamp	
re-test	11/9/15 14:04	1.0003941	322990	71.3	49.4	29.28	NORM @ 11/06/15 20:40:22	
ost-test	11/10/15 15:01	1.0003913	322990	71.1	49.6	29.06	NORM @ 11/06/15 20:40:22	
est Cond	itions		Phase 1	Phase 2	Phase 3	Phase 4		
		arometer (inHg)	29.09	29.09	-	-		
		ell Temp (degF)	73.91	74.00				
		ew Point (degF)	48.00	47.91				
		dity (grains/lbm)	51.09	50.90				
		NOx Corr Factor	0.8990	0.8983				
		Dilution Factor	12.37	11.08				
	CEVI	/mix (scf @68F)	3869.78	5909.20				
		ne A (scf @68F)	8,649	5,227				
		ne B (scf @68F)	16.408	9.946				
		ne C (scf @68F)	8.622	5.211				
		ne D (scf @68F)	0.022	0.2.1				
Sar	nple Volume Aver	STATE OF THE PARTY	11.226	6.795				
Out		/mix (scf @68F)	3883.08	5929.59				
		hase Time (sec)	130.00	364.90	107.50			
		Distance (miles)	1.748	6.215	101.00			
	PSU	Probe A (degC)						
	PSU	Probe B (degC)						
	PSU	Probe C (degC)						
		Dil Air A (degC)	44.7	44.5				
	PSU	Dil Air B (degC)	39.9	39.7				
	PSU	Dil Air C (degC)	41.2	41.0				
	PSU	J Filter A (degC)	46.8	46.8				
		J Filter B (degC)	49.5	49.6				
		Filter C (degC)	48.9	48.7				
		Dil Flow A (lpm)	29.4	29.2				
		Dil Flow B (lpm)	29.4	29.2				
	PSU	Dil Flow C (Ipm)	29.4	29.2				
	PSU	A Proportionality						
	PSU I	B Proportionality						
	PSU (C Proportionality						
150811 - 03	on Entitle In	1110125226		Page 2 of 2			Print Time 17-Nov-2015 1:	

11/17/2015 1:45 PM VTAURdxxx.xls

				Laboratory Test				cvs
		Test Number:	2016-0030-002	aboratory rest	Results	Vehicle ID:	FORD F150-29	94W597
est Information			11/3/2015				Ford Motor Co	
SHITED STADES		Start / Hot Soak:				MFR Codes:		30
(de la constante de la consta	Fuel Con	tainer ID / FTAG:	F00021 / 25278			Config #:		
\$. W			61 Tier 2 Cert Tes	st Fuel		Transmission:		
18 10 11		the second of th	21 Fed Fuel 2-day		LLOADVES	Shift Schedule:		
18	EE Co	iculation Method:		y Exhaust (CA)	LONDI(III)			
THE PROTECT			Gasonie			Beginning Odometer:		
	19	Pretest Remarks:	AND			Drive Schedule:		
	_	Drive Axle:	AVVD			Soak Period:	16.5 nours	
Bag Data	N20	HC-FID	CO	NOx	CO2	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample		8.592	27.034	1.004	1.078			
Ambien		2.330	0.221	0.016	0.049			
Net Concentration		6.450	26.831	0.989	1.033	10123	5.349	
vet concentration	0.074	0.430	20.031	0.303	1.050	1.024	0.545	
40000	Remarks	Č.						
Phase 2	0.044	2047	0.000	0.005		4.000		
Sample		2.217	2.309	0.025	0.648	191000		
Ambien	200	2.290	0.071	0.012	0.047	7.7 (2.7)	2,375	
Net Concentration	0.001	0.037	2.241	0.013	0.603	0.033	0.001	
	Remarks							
Phase 3	Nemains							
	0.400	3.321	24.161	0.340	0.915	2.463		
Sample					46,100,000			
Ambien		2.208	0.000	0.012	0.046	2.021	25.512	
Net Concentration	0.096	1.264	24.161	0.329	0.873	0.581	0.640	
Phase 4	Remarks							
Sample								
Ambient								
Net Concentration								
	Remarks							
esults	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1		0.122	1.023	0.056	619.0	0.022	0.101	14.354
Phase 2		0.001	0.136	0.001	576.5	0.001	0.000	15.454
Phase 3		0.024	0.921	0.018	522.6	0.013	0.012	17.006
1 11836 3	5,030	JULI	3,02.1	2,2,3	024.0			
Weighted	0.00254	0.03240	0.53585	0.01723	570.516		0.0243 / 0.0253	
ueī Economy		Gasoline MPG				Dyno Settings		D329 - AWD
	Phase 1	14.34				Aug Brake	Inertia:	
	Phase 2					Y	EPA Set Co A	Branch Comment
						1	EPA Set Co B	
	Phase 3	16.99				4	EPA Set Co C	
	244.2.4	10.00	×					
	Weighted	15.57				AWD	Emiss-Bench:	IVIEXA / ZUUG

11/4/2015 3:40 PM

								cvs
<i>y</i>		Test Number: 2		Laboratory Test	Results	Vehicle ID:	FORD F150-29	94W597
ise 1 ise 2 ise 3		HC-FID (grams) 0.436 0.004 0.085	<u>CO</u> (grams) 3.662 0.524 3.295	NOx (grams) 0.199 0.004 0.066	CO2 (grams) 2215.0 2215.7 1870.7	<u>CH4</u> (grams) 0.080 0.004 0.045	NMHC (grams) 0.362 0.000 0.043	Meth Response 1.075
ons Spe	Avg Ce De cific Humic N CO2	ell Temp (degF) ew Point (degF) dity (grains/lbm) NOx Corr Factor Dilution Factor	Phase 1 29.25 74.23 48.12 51.03 0.8987 12.388 4139.94	Phase 2 29.25 74.08 48.29 51.37 0.9000 20.672 7094.01	Phase 3 29.25 73.94 47.84 50.49 0.8967 14.596 4136.41	Phase 4		
C	VS Flow F	Rate Avg (scfm)	489.26	488,68	489.03			
	Pha	ise Time (secs) Distance (miles)	oad Speed Fan 507.70 3.579 938.4	871.00 3.843 142.4	507.50 3.579 63.8			
		IWR % diff ASCR % diff EER	FTP B1 -0.924 -0.751 -0.674	FTP B2 -1.171 -0.615 -0.398	FTP B3 -0.443 -0.397 -0.707		FTP-W -0.925 -0.591 -0.551	MFR
	ons Spec	ons B Avg Co Specific Humio CO2 CFV V CVS Flow F	N2O HC-FID (grams) (grams) ase 1 0.016 0.436 ase 2 0.000 0.004 ase 3 0.021 0.085 Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF) Specific Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F) CVS Flow Rate Avg (scfm) Fan Placement: R Phase Time (secs) Distance (miles) Bag Analysis Time (secs)	Test Number: 2016-0030-002 N2O	N2O HC-FID CO NOx	N2O HC-FID CO NOx CO2 (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (grams) (g	Phase 1	Final Laboratory Test Results Test Number: 2016-0030-002 Vehicle ID: FORD F150-28

11/4/2015 3:40 PM

Page 2 of 2

v150811 - d329_

EPAVDAEm151103095030

Print Time 04-Nov-2015 15:40

Final Laboratory Test Results

Test Number: 2016-0030-003

Test Date: 11/3/2015

Key Start: 11:20:46

Fuel Container ID / FTAG: F00021 / 25278

Fuel Type: 61 Tier 2 Cert Test Fuel

Test Procedure: 3 HWFET (hwfetprep_hwfet)

FE Calculation Method: Gasoline

Pretest Remarks:

Drive Axle: AWD

Vehicle ID: FORD F150-294W597

CVS

MFR Name Ford Motor Company MFR Codes: FMX

Config #: 00

Transmission: Auto

Shift Schedule: A0EPA0011 Beginning Odometer: 047047.0 MI

Drive Schedule: hwfetwarmup_hwfel

Bag Data	N20 .	HC-FID	CO	NOx	CO2	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	0.336	2.352	3.156	0.148	1.240	2.130	2.4	
Ambient	0.322	2.151	0.000	0.014	0.047	2.016		
Net Concentration	0.044	0.400	3.156	0.136	1,197	0.301	0.077	

Remarks:

Phase 2

Sample Ambient

Net Concentration

Test Information

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample

Ambient

Net Concentration

Remarks:

Results	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.001	0.004	0.063	0.004	373.2	0.003	0.001	23.875

NMOG=1.04 x NMHC

Fuel Economy				Dyno Settings		D329 - AWD
P. M. N	Phase 1 23.85			Aug Brake	Inertia:	The state of the s
				Y	EPA Sel Co A:	-12.59
					EPA Set Co B:	-0.0583
				<u>\$</u>	EPA Set Co C:	0.03829
			4	4		
				AWD	Emiss-Bench:	Mexa 7200dle
v150811 - d329_	EPAVDAEm151103105741	Page 1	of 2		Print Tim	ie 04-Nov-2015 15:41

11/4/2015 3:41 PM VTAURdxxx.xls

0		aboratory T				cvs
Test Number:		boratory Test	Results	Vehicle ID.	FORD F150-2	0414/507
N20 HC-FID (grams) (grams) Phase 1 0.014 0.040	CO (grams) 0.641	NOx (grams) 0.041	<u>CO2</u> (grams) 3818.0	CH4 (grams) 0.035	NMHC (grams) 0.008	Meth Respon 1.075
Fest Conditions Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF) Specific Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor CFV Vmix (scf @68F)	Phase 1 29.25 73.91 48.26 51.31 0.8998 10.806 6156.76	Phase 2	Phase 3	Phase 4		
CVS Flow Rate Avg (scfm)	482.82					
Fan Placement: F Phase Time (secs) Distance (miles) Bag Analysis Time (secs)	Road Speed Fan 765.10 10.230 62.2					
IWR % diff ASCR % diff EER	HWY 0.212 -0.006 -0.606					MFR 7 -

11/4/2015 3:41 PM VTAURdxxx.xls

Print Time 04-Nov-2015 15:41

Page 2 of 2

v150811 - d329

EPAVDAEm151103105741

Final Laboratory Test Results - NOTE; Variance from CFR procedures per OECA-OAR QAPP October 2015

Test Number: 2016-0030-005

Vehicle ID: FORD F150-294W597

CVS

Test Information

Test Date: 11/3/2015 Key Start: 12:58:49

MFR Name Ford Motor Company MFR Codes: FMX 30

Fuel Container ID / FTAG: F00021 / 25278

Config #: 00 Transmission: Auto

Fuel Type: 61 Tier 2 Cert Test Fuel Test Procedure: 8.09 sc03wu_sc03

Shift Schedule: A0EPA0005 Beginning Odometer: 047084.0 MI

FE Calculation Method: Gasoline

Pretest Remarks:

Drive Axle: AWD

Drive Schedule: sc03wu_sc03

Bag Data	N20	HC-FID	CO	NOx	CO2	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample	0.365	3.315	19.217	0.915	0.870	2.429		
Ambient	0.326	2.145	0.077	0.013	0.044	1.982		
Net Concentration	0.061	1.309	19.144	0.903	0.828	0.576	0.690	

Remarks:

Phase 2

Sample Ambient

Net Concentration

Remarks:

Phase 3

Sample Ambient

Net Concentration

Remarks:

Phase 4

Sample Ambient Net Concentration

Remarks:

Results	N20	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.004	0.029	0.856	0.060	582.0	0.015	0.015	15.279

NMOG=1.04 x NMHC

Fuel Economy	Gas	soline MPG			Dyno Settings	Dyno #:	D329 - AWD
1.00	Phase 1	15.26			Aug Brake	Inertia:	6000
					Y	EPA Set Co A:	-12.59
						EPA Set Co B:	-0.0583
					4	EPA Sel Co C:	0.03829
			(-1)		-		
					AWD	Emiss-Bench:	Mexa 7200dle
v150811 - d329 E	PAVDAEm15110312	2553		Page 1 of 2		Print Tim	ne 04-Nov-2015 15:4

VTAURdxxx.xls

12	Final Laborate	ory Test Results	- NOTE: Variance	e from CFR pr	ocedures per Of			cvs
sults	N2O	Test Number: 2 HC-FID	016-0030-005 CO	NOx	CO2		FORD F150-29	Meth Respo
	(grams) Phase 1 0.015	(grams) 0.103	(grams) 3.056	(grams) 0.213	(grams) 2077.7	<u>CH4</u> (grams) 0.053	NMHC (grams) 0.055	1.075
st Cond	Avg Ce Avg Ce De Specific Humic N CO2 CFV V	arometer (inHg) all Temp (degF) aw Point (degF) lity (grains/lbm) IOx Corr Factor Dilution Factor mix (scf @68F)	Phase 1 29.22 74.22 48.11 51.05 0.8988 15.363 4840.93	Phase 2	Phase 3	Phase 4		
	F Pha D	tate Avg (scfm) Fan Placement: R se Time (secs) bistance (miles) sis Time (secs)	487,34 oad Speed Fan 596,00 3,570 58.0					
		IWR % diff ASCR % diff EER						MFR -

VTAURdxxx.xls

				Laboratory T				cvs
		Test Number	2016-0030-004	aboratory Test	Results	Vehicle ID:	FORD F150-2	94W597
Test Information		Test Date: Key Start:	11/3/2015 12:02:01			MFR Name MFR Codes:	Ford Motor C FMX	C-C3+10111 P-112
5 D	Fuel Con	tainer ID / FTAG:	61 Tier 2 Cert Te	at Eupl		Config #: Transmission:		
		the second secon	89 us062bag (us		wc06)	Shift Schedule:	Charles a live of the	
3	FF Ca	Iculation Method:		oowariiup_zuag		Beginning Odometer:		
PAI PROTES		Pretest Remarks:	Casoline			Drive Schedule:		2hagus06
		Drive Axle:	AWD			Diffe defication	doodwaniidp_	Louguouv
ag Data	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample		4.092	24.838	1.293	0.830	2.549	ALC: V	
Ambient		2.166	0.326	0.013	0.044	1.999		
Vet Concentration		2,061	24.532	1.280	0.789	0.674	1.336	
(24) (84) (84) (81)	56,115		5 (1)	01000	4.7.44	3,31.7		
	Remarks	6						
hase 2								
Sample	0.416	4.253	35.082	2.505	1.149	2.609		
Ambient		2.216	0.175	0.015	0.045	2.011		
Vet Concentration		2.228	34.922	2.491	1.108	0.771	1.400	
there o	Remarks:	í						
Phase 3								
Sample								
Ambient let Concentration								
ver Concentration								
	Remarks:							
hase 4	ricinario.							
Sample								
Ambient								
let Concentration								
11,24,311,313,742,0								
	Remarks:							
esults	N20	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
The same of	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.012	0.068	1.633	0.126	825.3	0.026	0.044	10.764
Phase 2	0.006	0.032	1.015	0.107	506.1	0.013	0.020	17.553
							NMOG=1.04 x NM	4C
Composite	0.00698	0.04006	1.15265	0,11130	577.093		0.0255 / 0.026	
uel Economy		Gasoline MPG		-		Dyno Settings		: D329 - AWD
	Phase 1	10.75				Aug Brake	Inertia	: 6000
	Phase 2					Y	EPA Set Co	A: -12.59
	The state of						EPA Set Co l	3: -0.0583
						1	EPA Set Co (C: 0.03829
		15.38				AWD	Emiss-Bench	7000
	omposite							

			Laboratory To				CVS
(52)	ant Niconham	Final L 2016-0030-004	aboratory Test	Results	Vehiala (Dr	FORD F150-29	0414/507
	HC-FID	CO	NOx	CO2	CH4	NMHC	Meth Respon
	(grams)	(grams)	(grams)	(grams)	(grams)	(grams)	1.075
Phase 1 0.022	0.121	2.913	0.225	1472.0	0.046	0.079	(197.5)
Phase 2 0.034	0.200	6.332	0.668	3156.4	0.080	0.126	
est Conditions	meter (inHg)	Phase 1 29.23	Phase 2 29.23	Phase 3	Phase 4		
	Temp (degF)	74.46	74.58				
	Point (degF)	48.46	48.16				
Specific Humidity		51.73	51.13				
	Corr Factor	0.9014	0.8991				
	ution Factor	16.085	11.620				
	(scf @68F)	3601.04	5499.55				
CVS Flow Rate	e Avg (scfm)	912.42	904.04				
Fan	Placement: F	Road Speed Fan					
	Time (secs)	130.00	365.00	106.80			
	ance (miles)	1,784	6.237				
Bag Analysis	Time (secs)	66.5	247.3				
		US06-C	US06-H			US06-T	MFR
	IWR % diff	-2.413	-4.180			-3.273	
A	SCR % diff	-0.764	-3.320			-1.574	
	EER	-2.585	-0.831			-1.274	2

11/4/2015 3:41 PM

Print Time 04-Nov-2015 15:41

Page 2 of 2

v150811 - d329

EPAVDAEm151103114029

				Laboratory To				cvs
		Test Number	2016-0030-006	aboratory Test I	results	Vahirla ID	FORD F150-294	W597
Test Information		Test Date: art / Hot Soak:	11/6/2015 08:18:10 / 09:21 F00021 / 25278				Ford Motor Com FMX	
E _ E	dei Coma		61 Tier 2 Cert Te	st Fuel		Transmission:		
THE PASTICE OF	FE Calcu		21 Fed Fuel 2-da Gasoline			Shift Schedule Beginning Odometer Drive Schedule Soak Period	A0EPA0005 047107.0 MI ftp3bag	
		Drive Axe.	AVVD			SOUR PERIOD.	10.0 flours	
Bag Data	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	
Phase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample		8.033	26.591	1,552	1.102			
Ambient		2.060	0.000	0.014	0.045	(3.000)		
Net Concentration	0.083	6.143	26,591	1.540	1.061	1.074	4.989	
	Damada							
Phase 2	Remarks:							
Sample	0.310	2.064	5.681	0.031	0.663	1.923		
Ambient		2 134	0.000	0.007	0.045			
Net Concentration	0.002	0.035	5.681	0.024	0.621	* 1 * 7 7 7 7	-0.016	
7 22 25 25 25 25 25 25 25 25 25 25 25 25	4000	4.432	47.70		2.72	305 /50	A. C.	
	Remarks:							
Phase 3								
Sample		3,171	19.669	0.282	0.931			
Ambient		2.059	0.000	0.011	0.045		140044	
Net Concentration	0.048	1.255	19.669	0.272	0.889	0.502	0.715	
	Remarks:							
Phase 4								
Sample								
Ambient								
Net Concentration								
	Remarks:							
	35 C (30 - 10 to 1							
Results	N20	HC-FID	CO	NOx	CO2		NMHC	Vol MPG
Dhare 4	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)		(gpm)	(mpg)
Phase 1 Phase 2	0.005	0.113	0.985	0.087	617.4 574.0		0.092	14.392 15.513
Phase 3		0.001	0.731	0.015	519.4		0.000	17.120
Filade 3	0.000	0 023	0,751	0.010	513.4	U.U.T	NMOG=1.04 x NMH	
Weighted	0.00184	0.03019	0.57758	0.02342	568.06	6 0.00848	0.0226 / 0.0235	
Fuel Economy		Gasoline MPG				Dyno Settings		D329 - AWD
7 2 2 2 2 2	Phase 1	14.38				Aug Brake	Inertia:	6000
	Phase 2	15.50				Y	EPA Set Co A:	
	Phase 3	17.10					EPA Set Co B	
						4	EPA Set Co C:	0.03829
						10 Del. 1		
	Weighted	15.65				AWD	Programme Progra	Mexa 7200dle

11/16/2015 11:36 AM VTAURdxxx xls

14	9.)				Laboratory Test				cvs
1			Test Number: 2		market and the	70.2-20.0	Vehicle ID:	FORD F150-2	94W597
Results		N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	Meth Response
		(grams)	(grams)	(grams)	(grams)	(grams)	(grams)	(grams)	1.075
	Phase 1	0.018	0.407	3.557	0.315	2230.1	0.082	0.331	
	Phase 2	0.001	0.004	1.301	0.009	2233.7	0.006	0 000	
	Phase 3	0.010	0.083	2.628	0.056	1867.1	0.038	0.047	
Test Co	nditions			Phase 1	Phase 2	Phase 3	Phase 4		
30. 30		B	arometer (inHg)	28.84	28.85	28.86	11000		
			ell Temp (degF)	74.01	73.96	73.98			
			ew Point (degF)	51.90	51.81	51.32			
	Sp		lity (grains/lbm)	59.70	59.48	58.37			
			Ox Corr Factor	0.9329	0.9320	0.9275			
			Dilution Factor	12,121	20.178	14.360			
			mix (scf @68F)	4057.66	6945.34	4052.71			
		CVS Flow F	Rate Avg (scfm)	479.91	479.15	479.42			
			Fan Placement: F	load Speed Fa					
			ise Time (secs)	507.30	869.70	507.20			
			Distance (miles)	3.612	3.891	3.595			
			sis Time (secs)	927.2	131,5	59.4			
				FTP B1	FTP B2	FTP B3		FTP-W	MFR
			IWR % diff	-1.705	-2.763	-3.061		-2.629	
			ASCR % diff	-1.252	-1.691	-1.887		-1.662	*
			EER	-1.003	-1.397	+0.696		-1.122	40

v150811 - d320 EPAVDAEm151106080616 Page 2 of 2 Print Time 16-Nov-2015 11:36

11/16/2015 11/36 AM VTAURdxxx.xls

				Laboratory To				cvs
		Toot Number		aboratory Test I	Results	Victoria In.	FODD 5150.00	041507
Tant Information			2016-0030-007				FORD F150-29	
Test Information			11/6/2015				Ford Motor Con	
STATES STATES	Eurl Cantai	Key Start:				MFR Codes:		30
(C)	Fuel Contai		F00021 / 25278			Config #:		
			61 Tier 2 Cert Te			Transmission:		
18 24 3	T	est Procedure:	3 HWFET (hwfet	(prep_hwfet)		Shift Schedule:	A0EPA0011	
Charles and	FE Calcu	lation Method:	Gasoline		Begi	inning Odometer:	047119.0 MI	
PROTE	Pre	etest Remarks:				Drive Schedule:	hwfetwarmup_h	wfet
		Drive Axle:	AWD			Constitution of the		
Bag Data	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)	(ppm)	(ppmC)	
Sample		2.601	5.547	0.182	1.252	2.154	460.124	
Ambient		2.232	0.000	0.011	0.046	1.980		
Net Concentration		0.578	5.547	0.172	1.210	0.359	0.192	
iet Concentration	0.050	0.576	5.547	0.172	1.210	0,359	0,192	
	Daniela							
	Remarks:							
Phase 2								
Sample								
Ambient								
Net Concentration								
	Remarks:							
hase 3								
Sample								
Ambient								
Net Concentration								
	Remarks:							
hase 4								
Sample								
Ambient								
Net Concentration								
ioi conconitation								
	Remarks:							
lesults	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.002	0.006	0.108	0.005	368,7	0.004	0.002	24 164
							NMOG=1.04 x NMH	C
		Gasoline MPG				Dyno Settings	Dyno #:	D329 - AWD
uel Economy	Phase 1	24.14				Aug Brake	Inertia:	6000
uel Economy	L Hase I					Y	EPA Set Co A	
uel Economy	Chase I							
uel Economy	Chase I						EPA Set Co B	
uel Economy	riiase i						EPA Set Co B	-0.0583
uel Economy	That I						EPA Set Co B EPA Set Co C	-0.0583

11/16/2015 11:36 AM VTAURdxxxxis

(0)				CVS				
		Test Number	Final Lat 2016-0030-007	Vehicle ID	94W597			
esults Phase 1	N2O (grams) 0,016	HC-FID (grams) 0.057	CO (grams) 1,103	NOx (grams) 0,051	CO2 (grams) 3781.7	CH4 (grams) 0.041	NMHC (grams) 0.019	Meth Respons 1,075
est Conditions Sp	Avg C D pecific Humi CO2	arometer (inHg) ell Temp (degF) ew Point (degF) dity (grains/lbm) NOx Corr Factor 2 Dilution Factor /mix (scf @68F)	10.698	Phase 2	Phase 3	Phase 4		
		Rate Avg (scfm)						
	Ph	Fan Placement: ase Time (secs) Distance (miles) ysis Time (secs)	10.257					
		IWR % diff ASCR % diff EER	-1.468					MFR - -

11/16/2015 11:36 AM VTAURdxxx.xls

Print Time 16-Nov-2015 11:36

Page 2 of 2

v150811 - d329

EPAVDAEm151106090606

NVFEL Laboratory Test Data CVS Final Laboratory Test Results - NOTE: Variance from CFR procedures per OECA-OAR QAPP October 2015 Test Number: 2016-0030-009 Vehicle ID: FORD F150-294W597 Test Information Test Date: 11/6/2015 MFR Name Ford Motor Company Key Start: 10:58:23 MFR Codes: FMX Fuel Container ID / FTAG: F00021 / 25278 Config #: 00 Fuel Type: 61 Tier 2 Cert Test Fuel Transmission: Auto Test Procedure: 8.09 sc03wu sc03 Shift Schedule: A0EPA0005 FE Calculation Method: Gasoline Beginning Odometer: 047156.0 MI Pretest Remarks: Drive Schedule: sc03wu_sc03 Drive Axle: AWD Bag Data HC-FID CO₂ N20 CO NOx CH4 **NMHC** Phase 1 (ppm) (ppmC) (ppm) (ppm) (%) (ppm) (ppmC) 0.339 3.257 12.426 0.858 0.886 2.342 Sample Ambient 0.326 2.310 0.000 0.007 0.044 2.012 Net Concentration 0.034 1.100 12 426 0.852 0.845 0.463 0.602 Remarks: Phase 2 Sample Ambient Net Concentration Remarks: Phase 3 Sample Ambient Net Concentration Remarks Phase 4 Sample Ambient Net Concentration

Remarks:

Results	N2O	HC-FID	CO	NOx	CO2	CH4	NMHC	Vol MPG
	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(gpm)	(mpg)
Phase 1	0.002	0.024	0.545	0.056	582.4	0.012	0.013	15.281

NMOG=1.04 x NMHC

Fuel Economy	Gasoline MPG		Dyno Settings	Dyno #:	D329 - AWD
707	Phase 1 15.27		Aug Brake	Inertia:	6000
			Y	EPA Set Co A:	-12.59
				EPA Set Co B:	-0.0583
			2	EPA Set Co C	0.03829
			AWD	Emiss-Bench:	Mexa 7200dle
V150811 - d329	EPAVDAEm151106102804	Page 1 of 2		Print Tim	ie 15-Nov-2015 11:37

11/16/2015 11:37 AM VTAURdxxx xls

Final Laboratory Test Results		aboratory To		CA.OAR OARR	October 2015	cvs
Test Number: 2	2016-0030-009			Vehicle ID	FORD F150-2	
Results N2O HC-FID (grams) (grams) Phase 1 0.008 0.086	CO (grams) 1.951	NOx (grams) 0.199	CO2 (grams) 2084.0	CH4 (grams) 0.042	(grams) 0,047	Meth Response 1.075
Test Conditions Barometer (inHg) Avg Cell Temp (degF) Dew Point (degF)	Phase 1 28.92 74.20 48.82	Phase 2	Phase 3	Phase 4		
Specific Humidity (grains/lbm) NOx Corr Factor GO2 Dilution Factor CFV Vmix (scf @68F)	53.01 0.9063 15.098 4762.54					
CVS Flow Rate Avg (scfm)	479.45					
Fan Placement: Phase Time (secs)	596.00					
Distance (miles) Bag Analysis Time (secs)	3.578 58.0					
IWR % diff ASCR % diff						MFR
EER						*

11/16/2015 11:37 AM VTAURdxxx.xls

Page 2 of 2

v150811 - d329

EPAVDAEm151106102804

Print Time 16 Nov-2015 11 37

				aboratory Test				cvs
		Test Number	2016-0030-008	boratory Test Resi	ults	Vehicle ID	FORD F150-29	110/507
est Information			11/6/2015				Ford Motor Co	
JOTED STATES		Key Start				MFR Codes:		30
(3	Fuel Contai	ner ID / FTAG:	F00021 / 25278			Config #		-
			61 Tier 2 Cert Tes	st Fuel		Transmission:		
	Т			6warmup_2bagus06	5)	Shift Schedule:	AOFPAON41	
3		lation Method:		ondinap_rouguso.	-1	Beginning Odometer		
AL PROTEC		etest Remarks:	Gusoniic			Drive Schedule		bagus06
	0.75	Drive Axle:	AWD			Diffe Concusto	5000mannap_	cugues
							- CHARLE	
ag Data	N20	HC-FID	CO	NOx	CO2		NMHC	
hase 1	(ppm)	(ppmC)	(ppm)	(ppm)	(%)		(ppmC)	
Sample		7.794	265.212	2 252	0.988			
Ambient		2,561	0.000	0.010	0.046		- V-2	
et Concentration	0.148	5.427	265,212	2.242	0.946	1,629	3.675	
hase 2	Remarks: \	Variant Test						
Sample	0.389	9.067	354 252	1.445	1,337	3.883		
Ambient		2.642	0.000	0.011	0.046			
let Concentration		6.696	354.252	1.435	1.298	2.089	4.450	
	Remarks:							
hase 3								
Sample Ambient								
Net Concentration								
	Remarks:							
hase 4	witch street state							
Sample								
Ambient let Concentration								
ict obligation								
	Remarks:							
esults	N20	HC-FID	CO	NOx	CO2		NMHC	Vol MPG
2011	(gpm)	(gpm)	(gpm)	(gpm)	(gpm		(gpm)	(mpg)
Phase 1		0.153	15.081	0.192	845 (0.104	10.255
Phase 2	0.004	0.082	8.748	0.053	502.8	0.030	0.054	17.246
0	0.00504	0.00763	10 15220	0.00425	670 0	0.02475	NMOG=1.04 x NMI 0.0653 / 0.067	
	0.00591	0.09763	10.15236	0.08426	578.66	59 0.03478 Dyno Settings		
Composite		Gasoline MPG 10.25				Aug Brake		D329 - AWD
uel Economy	Dhara *	111 22				Aug Brake	EPA Set Co	
	Phase 1							
	Phase 1 Phase 2	17.23						
							EPA Set Co E	3: -0.0583
						- AWD	EPA Set Co (3: -0.0583

11/17/2015 8:35 AM VTAURdxxx.xls

(2)	V-10.00.000	ciliano	cvs				
		2016-0030-008	110			FORD F150-2	
Phase Phase		CO (grams) 26.804 54.590	NOx (grams) 0.342 0.334	CO2 (grams) 1501.7 3137.6	CH4 (grams) 0.094 0.184	NMHC (grams) 0.184 0.340	Meth Response
Test Conditions	Barometer (inHg) Avg Cell Temp (degF)	74.35	Phase 2 28.90 74.42	Phase 3	Phase 4		
S	Dew Point (degF) pecific Humidity (grains/lbm) NOx Corr Factor CO2 Dilution Factor	55.94 0.9178	50.29 56.06 0.9183 9.759				
	CFV Vmix (scf @68F)		4673,90				
	CVS Flow Rate Avg (scfm)	776.72	768.31				
		Road Speed Fa		100.00			
	Phase Time (secs, Distance (miles, Bag Analysis Time (secs,	1.777	365.00 6.240 241.0	106.80			
		US06-C	US06-H			US06-T	MFR
	IWR % diff ASCR % diff EER	0.457	-7.007 -5.490 -0.879			-3.383 -1.427 -0.786	

11/17/2015 8:35 AM VTAURdxxx xis

Print Time 17-Nov-2015 08:35

Page 2 of 2

EPAVDAEm151106094845

V15D811 - d329_

Paired Data Offset of ≥3% Report

					-					
		MFR	Num				Load			
				MPH	EPA Lbs	Mfr. Lbs.	Delta %	target	veh EPA	veh Mfr
	VID:			10	82.245	84.137	2.30%	84.137	1.892	0
				20	106.952	110.736	3.54%	110.736	3.784	0
				30	139.101	144.777	4.08%	144.777	5.676	0
Test Nur	nbers	Date	Dyno	40	178.692	186.26	4.24%	186.26	7.568	0
	FTP			50	225.725	235.185	4.19%	235.185	9.46	0
	HFET			60	280.2	291.552	4.05%	291.552	11.352	0
	US06									

Offse	t Sum	mary

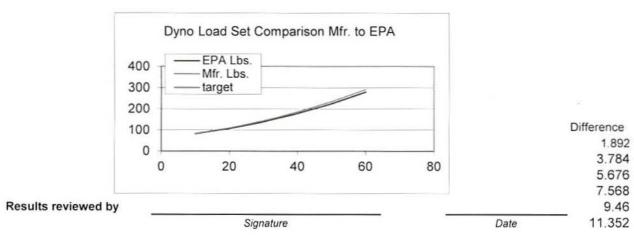
	Vehicle+Set	= Target
Quickcheck CD %	Diff #	#DIV/0!

		<u>EPA</u>	MFG		Mfg Diff%			<u>EPA</u>	MFG	Mfg Diff%
FTP	FE				#DIV/0!	US06	FE (Bag2)			#DIV/0!
	THC				#DIV/0!		FE (Total)			#DIV/0!
	CO				#DIV/0!		THC			#DIV/0!
	NOx				#DIV/0!		CO			#DIV/0!
	CO2				#DIV/0!		NOx			#DIV/0!
	CH4				#DIV/0!		CO2			#DIV/0!
	NMHC				#DIV/0!		CH4			#DIV/0!
							NMHC			#DIV/0!
HFET	FE				#DIV/0!	Dyno Set				
	THC				#DIV/0!	Coeffs.	EPA	MFG	Target	
	CO				#DIV/0!	Α	64.98	Commence of the Commence of th	And the second s	
	NOx				#DIV/0!	В	1.3544	1.5436	1.5436	
	CO2				#DIV/0!	С	0.03721	0.03721	0.03721	
	CH4				#DIV/0!					
	NMHC		0	0	#DIV/0!					

Finding: F

FTP Test results and related information indicate results are

valid


HFET US06

Observations on finding:

1

2

3

Notices

Reminder, Februarys Entry Is Up

The Diesel Place, Billet License Plate Frame Give Away.

Fifth Generation Duramax Electronics/Tuners Discuss 2011+ LML Duramax engine electronic upgrades including chips, tuners, programmers, etc.

Google™ Custom Search Search

DieselPlace.com is the premier <u>Duramax Diesel Forum</u> on the internet. <u>Registered Users</u> do not see the above ads.

20Duramax11 Diesel Enthusiast

Join Date: Dec 2010 Posts: 5 iTrader Score: 0 reviews Bully Dog, LML, and more Regenerations

Guys,

I'm new to the forum and need a little help. I recently added a <u>Bully Dog Triple Dog GT</u> to my 2011 Duramax. Since adding it I am experencing way more regenerations than I was getting stock. Before the tuner I was about 1 regen per tank. Now I am experiencing a regen about every 100-125 miles (about 4-5 times per tank). I am not running the truck hard, just normal driving. What would be causing this? Anyone else having this problem with this set up? Is this going to damage the truck over time? I have contacted Bully Dog but can't seem to get any real answers. Any help would be greatly appreciated. Thanks.

Share

Shop Used Cars Online

Get A 7-Day Test Own - Carvana ®. Browse and Buy Online Now!

D X

Remove Advertisements

Offline

Sponsored Links Diagonal Phage against

DieselPlace.com
Advertisement

04-11-2011, 09:37 PM #2 (permalink)

falcontech

Diesel Fanatio

Join Date: Sep 2010 Location: Atlanta, GA Posts: 59

View Photos By: falcontech

iTrader Score: 0 reviews

I had the bullydog tuner for a few months until H&S released their tunner. I experienced the same thing, had about 3 or 4 regens per tank. The more city and driving I did and the more i abused the truck the more it went into regen. From what I have learned this is normal. The tune is essentally burning more fuel for more power which makes more soot that the DPF Filer needs to clean, therefore more regens. The only way to get around this is call H&S and remove the DPF. You will be 😁

Share

"Error 1603" 1603.erroransw. Takes only 2 minutes.	Transmission greasymonkeytransmi Transmissions all	Search Videos w/ HowToSimplified How to Do it Yourself - Free!	DPF Cleaning dpfregene Diesel Particulate Filters Cleaned Any Filter for Any Type of Vehicle	Truck Floor Mat c compares. 2016 Bestselling Truck Floor	© jamesw Our Prices & Service Can't Be Beat. Get a Free Quote	Visit Dell Outlet for Amazing Deals On PCs & Laptops	Ford® Site Ford.com Wisit the Official	Lewisville Automotive lewisvilleauto 1st Time Visit 20% Off Labor Full Service Auto Repair
---	--	---	--	---	---	--	--	--

Offline

#3 (permalink)

Share

<u>cstarnes</u>

Diesel Head

Join Date: Jun 2006

■ 04-11-2011, 11:32 PM

Posts: 25

iTrader Score: 0 reviews

Offline

How do you know your truck is going into REGEN?

■ 04-12-2011, 12:03 AM

<u>falcontech</u> Diesel Fanatic

Join Date: Sep 2010 Location: Atlanta, GA

View Photos By: falcontech

iTrader Score: 0 reviews

Offline

the easiest way is the elevated idle 640 rpm up to 800 rpm during regen. If you are able to read egt you will see them up about 200.

4-5 regens at every 100-125 miles means you are getting 400+ miles per tank of fuel?

Share

Quote

#<u>5</u> (<u>permalink</u>)

Share

■ 04-12-2011, 02:16 PM

Dirtymax81 Diesel Technician

Join Date: Jun 2007 Location: BFE

Posts: 461 iTrader Score: 0 reviews 2005 LLY-

PPF hot +24" Turbo back AFE CAI

■ 04-12-2011, 08:21 PM

Offline

#6 (permalink)

20Duramax11 Diesel Enthusiast

Join Date: Dec 2010 Posts: 5 iTrader Score: 0 reviews Yes. 36 gallon tank. I'm getting 530+ miles per tank right now. I do like the power gain. Just not to impressed with the constant regeneration cycles. I just hope it doesn't have any long term effects on the truck. The way i'm thinking about it is like this: At 100,000 miles with the tuner, the truck will have regenerated as many times as it would at 400,0000 miles without the tuner (before I was regenerating 1 time per tank on average) . I just wish Bully Dog would have disclosed this information before I spent \$700.

Share

Offline

■ 04-13-2011, 02:12 AM

Bartman432

Diesel Pro

Join Date: Jun 2007 Location: Upland, California Posts: 2,290

View Photos By: Bartman432

iTrader Score: 0 reviews

Offline

Ouch, 4-5 regens per tank. I hate having the regen just once per tank.

<u>Share</u>

#<u>7</u> (<u>permalink</u>)

Bought new: 2015 GMC Sierra Denali, 2WD, 5.3, all options. 2" Bell Tech drop shackles, MGP caliper covers, JL Audio 10" shallow mount sub 10TW3-D4 & JL Audio mono amp XD600/1v2

Sold: 2007.5 Chevy Silverado 2500 HD D-Max USMC Vet, 1988-1992, 3rd AABN YAT YAS

■ 04-13-2011, 02:38 AM

8100 Power

Diesel Master

Join Date: Nov 2004 Location: Middle-TN Posts: 3,364

View Photos By: 8100 Power

iTrader Score: 0 reviews

TN Diesel Place Club Member

Offline

Wheres BullydogJason at? Maybe he could help out with answers.

Share

#8 (permalink)

#9 (permalink)

■ 04-13-2011, 01:39 PM

<u>Dirtymax81</u> Diesel Technician

Join Date: Jun 2007 Location: BFE Posts: 461 iTrader Score: 0 reviews Only truck ive had experience with is a stock 2011 with the GT, it does a regen about 1 per tank on the performance tune, that is with majority of highway driving, maybe 75/25

do you have the 1128 software?

Share

2005 LLY-PPE hot+2 4" Turbo back AFE CAI

Offline

#<u>10</u> (<u>permalink</u>)

DIESELMAFIALB7 Diesel Specialist

Join Date: Oct 2008 Location: ID Posts: 777

View Photos By: **DIESELMAFIALB7**

iTrader Score: 1 reviews

<u>Idaho Turbo Diesels</u> <u>Member</u>

You probalby be happy going with the h&s to or just see if you can ge ride of your constant regen with the bully dog

Share

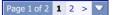
2003 GMC Sierra LB7 CC/SB best 1/4 12.17@113.24 Diesel Mafia performance turning(by me), PPE, EPR, ARP, FASS,Ect.....more in the works

Quote:

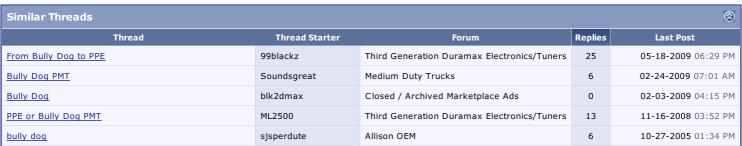
Originally Posted by Mike_S;

(efi live) Some Computer Laptop Cable Adapter Thingy I Don't Understand....

Why So Serious?


Offline

Remove Advertisements **Sponsored Links** DieselPlace.com Advertisement


lge

« Previous Thread | Next Thread »

All times are GMT -4. The time now is $10:08\ PM$.

---- DieselPlace-2015 Contact Us - Diesel Place: Chevrolet and GMC Diesel Truck Forums - Archive - Privacy Statement - Top

AutoGuide.com		Manufacturer	Domestic	Import	European	Truck	AutoGuide.com
AcuraWorld.com	FordInsideNews.com	MazdaWorld.org			ScionForumco	<u>m</u>	
Audi-Forums.com	GMnsidenews.com	Mni2.com			SaabScene.com	<u>m</u>	
<u>BenzForum.com</u>	Hyundai-Forums.com	Mtsubishi-Forums.co	<u>m</u>		SRTforums.com	n	
BenzWorld.org	HyundaiPerformance.com	Volvo-Forums.com			SuperHonda.co	<u>om</u>	
BirmerWerkz.com	Kia-Forums.com	Nssan-Sites.com			Suzuki-Forums	.com	
<u>DodgeTalk.com</u>	Lamborghini-Talk.com	NssanQub.com			ToyotaNation.c	<u>om</u>	
Ferrari-Talk.com	LandRoversOnly.com	NissanForums.com			<u>VWforum.com</u>	Noreast	
FordForums.com	<u>LotusTalk.com</u>						

Terms of Use

SEO by <u>vBSEO</u> 3.6.0

Notices

Reminder, Februarys Entry Is Up


The Diesel Place, Billet License Plate Frame Give Away.

Fifth Generation Duramax Electronics/Tuners Discuss 2011+ LML Duramax engine electronic upgrades including chips, tuners, programmers, etc.

Google" Custom Search

Search

DieselPlace.com is the premier <u>Duramax Diesel Forum</u> on the internet. <u>Registered Users</u> do not see the above ads.

Sponsored Links Remove Advertisements

DieselPlace.com

Advertisement

11-21-2011, 04:34 PM

#12 (permalink)

salmandmx Diesel Master

Join Date: Feb 2007 Location: N. Little Rock, Arkansas Posts: 1,028

View Photos By: salmandmx

iTrader Score: 0 reviews

I am assuming that all the extra regens is because the truck is in the highest power setting? If its in the lowest one, I assume the regens will be alot less frequent. I am wanting to buy one but if its gona regen every 100-125 miles.. No thanks!

Share

2011 2500HD Denali Duramax 4x4 Crew Cab 4" Cognito Lift - Fox Shocks 35x12.50R 20 - BMF Novakane 8s

Offline

#<u>13</u> (<u>permalink</u>)

Blackcloud556 Alligator Diesel Performance / Click here for info! Diesel Technician

■ 12-01-2011, 06:27 PM

Join Date: Sep 2011 Location: Coeur D'Alene Idaho Posts: 321 iTrader Score: 0 reviews Quote:

Originally Posted by falcontech D

The more city and driving I did and the more i abused the truck the more it went into regen. From what I have learned this is normal. The tune is essentally burning more fuel for more power which makes more soot that the DPF Filer needs to clean, therefore more regens. The only way to get around this is call H&S and remove the DPF. You will be :

This is exactly whats happening. You up the power, it creates more exhaust and soot which then clogs up the dpf faster. its the price you gotta pay if you want to keep the DPF and have a tuner on your truck.

Quote:

Originally Posted by 8100 Power D

Wheres BullydogJason at? Maybe he could help out with answers.

Im right here.. I no longer work for Bully Dog. 📆

Share

http://www.duramaxforum.com/forum/si...ic37951_16.gif

Jason. 06 LBZ. 208-777-1977

<u>Alligator Performance | Facebook</u>

<u>Blackcloud Photography</u>

Offline

■ 09-30-2014, 08:10 AM #14 (permalink)

<u>in4it</u> Diesel Rookie

Join Date: Sep 2014 iTrader Score: 0 reviews

This is not a Bully Dog or H&S issue. It is a GM issue and it got passed down to the unaware consumer.

GM is doing nothing about it.

They are not warranting my truck for constant regeneration issues after 2 years of suffer with this problem. The mechanics do not know what the issue could be from. Differential pressure sensor was replaced in Aug 2014. EGR valves were checked and reinstalled and then GM cut off the warranty on my truck. They said that the ECM was updated 6 times. They cannot tell me when, who, or what was modified from stock. I told them if I have a open check book and I paid for the \$1000 ECM and installation would it solve the problem? The answer: " I don't know. But, I would start there."

GM has done nothing to solve the problem for 2 years. My 2012 truck is still stock and now has 44K miles.

Regeneration happen every 100-125 mile.

They were happening every 60-80 miles.

Share

Last edited by in4it: 09-30-2014 at 08:13 AM.

Offline

#15 (permalink)

■ 09-30-2014, 01:53 PM

NorCal2500HD Diesel Head

Join Date: Dec 2005

iTrader Score: 0 reviews

The two should be separated because yes, canned tuners are known to run dirty and can cause more frequent regens. This was the case before EFI live came onto the scene for the LML providing much cleaner tunes

Similarly there are a lot of guys with bone stock trucks experiencing the same phenomenon including myself. However for us its not clear if its the result of a dirty running stock truck or something else.

Share

Offline

#<u>16</u> (<u>permalink</u>)

99-30-2014, 02:04 PM

in4it Diesel Rookie

Join Date: Sep 2014 iTrader Score: 0 reviews

Quote:

Originally Posted by NorCal2500HD 🔊

The two should be separated because yes, canned tuners are known to run dirty and can cause more frequent regens. THis was the case before EFI live came onto the scene for the LML providing much cleaner tunes

Similarly there are a lot of guys with bone stock trucks experiencing the same phenomenon including myself. However for us its not clear if its the result of a dirty running stock truck or something else.

What do you think could be creating the issue of constant regenerations?

Rumor on my end could be a faulty injector, or, bad software.

If there was a bad injector installed in the downpipe in 2011 and there was not a recall and that was found to be the problem, then that should be the first thing replaced and there should be a GM bulletin for it. I think there was something in April 2012 if memory serves me.

If it not an injector, then the software has to be the problem.

Share

Last edited by in4it; 09-30-2014 at 02:05 PM.

■ 09-30-2014, 06:00 PM

NorCal2500HD

Diesel Head

Offline

Join Date: Dec 2005 Posts: 560 iTrader Score: 0 reviews I wish I knew...

What I do know is 1) GM techs are clueless on how to resolve this and 2) GM corporate likely knows what's going on with these trucks and due to the cost to repair is turning a blind eye on its customers. I have a hard time believing GM corporate engineers don't have a clue what is causing this.

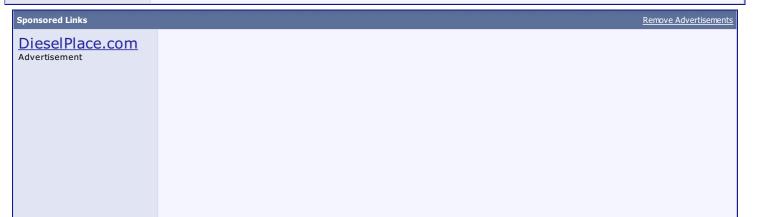
Share

Offline

■ 10-23-2014, 08:57 AM #18 (permalink) in4it Diesel Rookie

Join Date: Sep 2014 Posts: 39 iTrader Score: 0 reviews I called the Service Manager from the original dealer. Brand Quality and the dealer are putting something on the truck to monitor the vehicle and they want me to drive it around to get additional information from the vehicle. One thing I have noticed after installing the stock intake, it seems as thought the truck is relearning to readapt to the change in the intake systems.

I am back to 200 miles between regenerations. This is where I was prior to pulling the stock intake out. I did not really notice a vehicle performance change other than sluggish take off. Slow on the gas pedal reaction and mileage sucks. Maybe a little higher differential pressure from the CTS.


The last regeneration ended yesterday morning when I pulled in the parking lot at work. RPMs were still high when I shut down the truck. I was at 0g when I pulled in the parking space. Prior to me shutting off the vehicle within a minute of arrival soot level climbed to 9g on the CTS. I left work drove approx. 15 miles to the dealer I ended up with 12g of soot which is where it is at right now. I should be picking it up tonight.

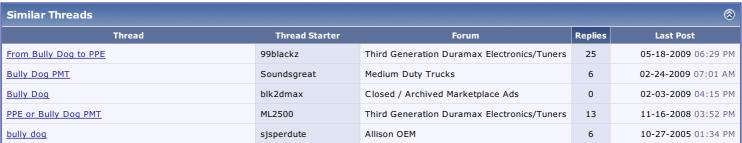
A huge white cloud still bellows out of the tail pipe at the beginning of the regeneration. If I shut down the system and let it cool and start it back up hours later. It does the same thing as the temps start to get back to soot burn levels.

Share

Quote

Offline

You May Like Sponsored Links by Taboola


How Millions Of Americans Have Cut Years Off Credit Card Payments LendingTree	Brilliant Mortgage Payoff Method Has Banks On Edge Comparisons.org
Get Grandfathered In For Extra Social Security By April 30th Stansberry Research	Homeowners Are in for a Big Surprise in 2016 AmeriValue Rate Quotes

« <u>Previous Thread</u> | <u>Next Thread</u> »

All times are GMT -4. The time now is 10:09 PM.

---- DieselPlace-2015 Contact Us - Diesel Place: Chevrolet and GMC Diesel Truck Forums - Archive - Privacy Statement - Top

Shoutbox provided by vBShout v6.2.1 (Lite) - vBulletin Mods & Addons Copyright © 2016 DragonByte Technologies Ltd. Runs best on HiVelocity Hosting.
© AutoGuide

AutoGuide.com		Manufacturer	Domestic	Import	European	Truck	AutoGuide.com
AcuraWorld.com	FordInsideNews.com	MazdaWorld.org			ScionForumco		
<u>Audi-Forums.com</u>	<u>GMnsidenews.com</u>	Mni2.com			SaabScene.com	<u>m</u>	
<u>BenzForum.com</u>	Hyundai-Forums.com	Mtsubishi-Forums.co	<u>m</u>		SRTforums.com	<u>n</u>	
BenzWorld.org	HyundaiPerformance.com	Volvo-Forums.com			SuperHonda.co	<u>om</u>	
BirmerWerkz.com	Kia-Forums.com	Nissan-Sites.com			Suzuki-Forums.	.com	
<u>DodgeTalk.com</u>	<u>Lamborghini-Talk.com</u>	NissanQub.com			ToyotaNation.co	<u>om</u>	
Ferrari-Talk.com	LandRoversOnly.com	NissanForums.com			<u>VWforumcom</u>	Noreast	
FordForums.com	LotusTalk.com						

Terms of Use

SEO by <u>vBSEO</u> 3.6.0

Will an aftermarket tuner cause the DPF to cloq up?

Resolved Question:

Will an aftermarket tuner cause the DPF to cloq up?

Share this conversation f | 🔰 | g+ | in | 🔀

Expert: Ric

Welcome to Just Answer...My name is XXXXX XXXXX i'm here to help you today.

Ric:

Yes and no they can depending on the tune that you want to run in your truck. Most companies have pretty compatible tunes for your truck. You might want to check with the dealer you take your truck to the most to see if using one of these might affect you emissions warranty.

i have been using a bullydog triple dog set to extreme. The EGR and DPF clogged up pretty good and the mechanic i took it to said that could be the

Ric:

Yep that will do it.

Ric:

The extreme setting runs more fuel thru the system the the emissions system has time to clean up.

ok, on a similar note... what can i do in the future to keep things running clean? I will obviously remove the tuner and use it only for gauges. I've heard running with the exhaust brake on all the time will help, also "drive it like you stole it".

Ric:

You could talk to the place where you bought your tuner or to anybody who uses the triple dog setup. The best place for good info would be to contact the bullydog company. I've dealt with them before and they are good and helpful.contd....

You can drive the truck with the exhaust brake on all the time as long as you are not annoyed wtih the noise. Using the exhaust brake more often does help keep the turbo slider clean.

Customer:

what can i do to keep the dpf clean? Do you have a tuner you recommend?

Ric:

Most of my customers do use the bullydog setup in the economy setting. To help keep the dpf clean you would need to drive the truck on the highway at about 55 to 65 mph and stay steady at that speed for about 20 to 30 miles occasionally to help burn off the soot build-up. Also about every 3rd oil change use a fuel additve that helps raise the BTU's of the fuel to help keep everything clean internally.

Customer:

would that be the tow setting? what additive would you suggest, seafoam?

Yes.. The additive i suggest is Kleen or Power service. You can get these at any parts store.

ok, i'll look for one of those. is there any benefit to driving the truck hard? I don't tow, so im not sure if my daily driving would put enough load on the

Ric:

The benefit of driving the truck harder is to help heating up the emissions system and the turbo slider clean. does you bullydog have the mobile desoot feature on it?

Customer:

ok, i'll start doing that. My bullydog does have the mobile desoot feature

Big Note: the particulate filter is designed to hold only so much of the burnt off soot...so if the system is run "dirty" so to speak too long the dpf can become clogged with the ash leavings and need replacing.

Customer:

any way to eject the leavings from the dpf?

Be sure to check for updates for your tuner occasionally

Customer:

absolutely

Ric:

You can try by removing the dpf and using compressed air to blow it out. Works about 70/30% of the time.

You can also do this to the other 2 convertors if they get soot fouled. Dodge sell a solution that works good for cleaning the egr system and soot deposits.

Can i help you with anything else?

Customer:

so there is no way to blow it out, it must be serviced?

Ric:

The soot or the ash?

Customer:

the ash

Ric:

Unfortunately the only way to try to get the ash out of a full dpf is to remove it and blow out as much ash as possible. Stand the dpf up on its end and use compressed air the flip it over and do it again.

Ric:

whoops...then not the....sorry

Customer:

what a pain. Thanks for your help!

Ric:

No problem. If you need anythig else just look up this chat and ask.

Ric, ASE Certified Technician Category: Dodge

Satisfied Customers: 150

Experience: ase certified/certified chrysler/dodge specialist/30 years

Ric and 3 other Dodge Specialists are ready to help you

Expert: Ric

Greetings..Ric from JustAnswer here.If you found my assistnace helpful...please dont hesitate to look me up here most anytime.Thank you again...

Ask Your Own Dodge Question

Share this conversation f \searrow g \bowtie g

Disclaimer: Information in questions, answers, and other posts on this site ("Posts") comes from individual users, not JustAnswer; JustAnswer is not responsible for Posts. Posts are for general information, are not intended to substitute for informed professional advice (medical, legal, veterinary, financial, etc.), or to establish a professional-client relationship. The site and services are provided "as is" with no warranty or representations by JustAnswer regarding the qualifications of Experts. To see what credentials have been verified by a third-party service, please click on the "Verified" symbol in some Experts' profiles. JustAnswer is not intended or designed for EMERGENCY questions which should be directed immediately by telephone or in-person to qualified professionals.

Contact Us | Terms of Service | Privacy & Security | About Us | Our Network © 2003-2016 JustAnswer LLC

DPF Delete **Duramax DPF Problems DPF Filter Cleaning Duramax Tuner** Diesel DPF Ads by Google User Name User Name Remember Me? <u>Chevy and GMC Duramax Diesel Forum</u> > <u>Chevy / GMC Duramax 07.5-2010 LMM Forums</u> > 07.5-2010 LMM Performance Parts Discussion Password Log in Plugged DPF with Bully Dog tuner Forums **Active Topics** Insurance

07.5-2010 LMM Performance Parts Discussion Discussion of Performance Parts For the 07 and up LMM Duramax Trucks No Advertising

DuramaxForum.com is the premier Chevy and GMC Duramax Diesel Forum on the internet. Registered Users do not see the above ads.

POST REPLY

Page 1 of 2 **1** 2 > ▼

eBay Motors #1 (permalink)

LinkBack ▼ Thread Tools ▼

Display Modes +

08-21-2013, 07:46 PM

<u>briankinley2004</u>

Join Date: Aug 2013 Location: Louisiana Posts: 202

0

Plugged DPF with Bully Dog tuner

First post here and hope I put this in the right place. I own a 2008 2500HD 4WD with a Duramax. It has 145,000 miles on it. At about the 30,000 mile mark I had a <u>Bully Dog gauge</u> tuner installed to get my speedometer right with some oversized tires that I put on. I don't really hot rod and tow maybe once a month. I have always run the tuner in "extreme" mode except when towing. So I have put over 100K miles on the vehicle with the tuner, gotten better mileage and zero issues.

Couple weeks ago on the way home from a long trip I started getting the "clean exhaust filter" and reduced power mode. I had only gotten this once before several months ago. I was on a 6HR trip and about an hour from home it finally quit completely stranding me. I had it towed to a dealer. They diagnosed it as a "plugged exhaust filter due to an aftermarket tuner". They charged me 2grand material and labor. I talked to the mechanic on the side and he said the tuners cause them to plug up more often but they do it anyway. He said if I got over 100K miles I should make that again without issues

Well the following week I made the same 6Hr journey. I had less than 1000 miles on the new filter and had towed nothing. Started getting these same issues again and 2 hr from home it quit again. Towed to a different dealer this time as I was in a different area. This dealer said it was "plugged exhaust filter due to aftermarket tuner". They said the new filter plugged up because I had tuner on. I told them I was not paying 2 grand again as I was quoted this amount to bypass it. So they left a gap between the exhaust filter and pipe so I could drive it home.

I got it to the Bully Dog guy. He said he couldn't believe it plugged up that fast. He actually cleaned the filter, updated the software and forced a burnoff. Spent over 3 hrs and didn't charge me a penny. He said to run it in tow mode a while and do 3 or 4 manual burn offs when I was running for 20 min or so. He then said to just run in performance mode not extreme. He had no suggestions as to why it would plug up again so soon.

I am leaving tomorrow night on the same journey. I now know I can use a 15mm wrench and crack this thing open to get out of a bind. My question is does anyone know why the new filter would have plugged up so soon? Is it possible there was residue in the exhaust from the initial removal that got caught in it or should I expect this to happen again soon. I just find it hard to blame the tuner when I put 110K miles on with it with zero issues. My driving habits haven't changed. I appreciate any input!

Sponsored Links Remove Advertisements

Duramax Forum

08-21-2013, 07:50 PM

eBay Motors #2 (permalink)

dmaxblack3

Join Date: Jan 2012 Posts: 582

08-21-2013, 07:52 PM

Sent from AutoGuide.com App

2008 <u>2500hd</u> duramax-5% tint all around-22x10 Recon SS American Force wrappend with 305/45/22 nitto 420s-edge cts insight-EFI'd-10 in kickers-kicker amp-alpine navigation-egr delete- 4 in turbo back- turbo res plugged- 8000k hids hi lo <u>DMAXSTORE.com</u> Your <u>Duramax</u> Diesel-Only Shopping Resource

Best thin to do would be get efi live and delete the dpf and your truck would run so much better! Good luck

eBay Motors #3 (permalink)

briankinley2004

Junior Member

Join Date: Aug 2013 Location: Louisiana Posts: 202

Thanks Dmax that's my plan but since I just spent 2 grand on the new filter I am going to try to milk it a while first. That is if it doesn't plug up again. Any idea on the cost of these alterations. I was quoted 2200 from a local shop but I didn't ask what brand delete chip

08-22-2013, 11:42 AM

eBay Motors #4 (permalink)

dmaxblack3 Senior Member

Join Date: Jan 2012 Posts: 582 Sent from AutoGuide.com App

2008 <u>2500hd</u> duramax-5% tint all around-22x10 Recon SS American Force wrappend with 305/45/22 nitto 420s-edge cts insight-EFI'd-10 in kickers-kicker amp-alpine navigation-egr delete- 4 in turbo back- turbo res plugged- 8000k hids hi lo <u>DMAXSTORE.com</u> Your <u>Duramax</u> Diesel-Only Shopping Resource

All depends on what tuner you go with and it's all custom. I went with mark from danville performance and I love it. You'll

just have to do some research on here and check out all the vendors and they'll get you hooked up!!

□ 08-22-2013, 11:59 AM

eBay Motors #5 (permalink)

Goose2448

DuramaxForum Fanatic

Join Date: Jan 2013 Location: TEXAS/Bokeelia, FL from Hanover, PA Posts: 8,321 You probably have an EGR problem. EFI from a good tuner with am exhaust and blocker plate will take care of the plugged DPF issues and cost half as much for what you paid for the new DPF.

SENT THROUGH MY DURAMAX'S BUNG HOLE

2008 GMC 3500HD CC LB DRW 4x4~Westin Step Bars, WeatherTech Floor Liners, Antenna "Delete", Plasti Dipped Grill and Emblems and Rims, Leveled, Funky Gear Rims, Nictane Adapter with Donaldson and Clear Bowl, 3" Magna Flow Down Pipe, 5" Diamond Eye Exhaust Dumped, EFI By Kory, Crobra 29LTD WX/BT/NW CB, Dual 4' Firesticks, Recon Roof Lights, Reese Pro Series 15K 5th Wheel Hitch

1985 Chevy C20 RCLB 350 4 Bolt, 4 Barrel Carb, 4.10 Gears, 8600 GVW, Glass Packs Dumped, Pig Skin Leather, Bed Mounted 5th Wheel, Dual 20 gal Tanks, 62,146 Miles, Indian Bronze and Cream~Rolled

DF DRW Club Member 129

Goose's Build Thread Thingy

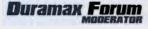
□ 08-22-2013, 12:37 PM

eBay Motors #6 (permalink)

Join Date: Jun 2010 Location: Coeur D'Alene Idaho

Posts: 5,938

tuned or not the dpf will eventually plug up, the tuner just helps to speed up the process. Its one of the unfortunate side effects that you ultimately have to deal with if you wish to leave your emissions systems in tact. Id either return it to stock to slow down the process or upgrade to a different tuner and delete the emissions systems completely.



■ 08-22-2013, 01:44 PM

eBay Motors #7 (permalink)

<u>jc1843</u>

Super Moderator

Join Date: Jun 2008 Location: So. Cal Posts: 14,023

Moved to LMM $\,$

Chevy 04.5 LLY, 2X, shell, XDR, MikeL Heavy duty up-grade, 6spd, TransGo, deep pan, de-badged, 65 Gallon replacement Aero tank, LBZ-mp, Kennedy pump, shimmed, Pre-fuel filter, tow mirrors, BU cam, gauges, GPS, Sirius, bags, custom grille, fender vents, HD trans cooler- Curt front hitch, footwell lights, load lights, Studs, head gaskets.---Jerry

08-27-2013, 08:20 PM

eBay Motors #8 (permalink)

briankinley2004 Junior Member

Join Date: Aug 2013 Location: Louisiana Posts: 202

Well I made the trip again with no issues running in performance mode and tow mode coming home towing a trailer. I don't understand why it clogged up one week after being replaced but once it was cleaned I haven't had an issue again. Could there have been residual stuff in the pipe? Goose how would I diagnose an EGR problem. Apparently 2 dealers didn't find it

09-02-2013, 07:38 PM

eBay Motors #9 (permalink)

briankinley2004

Join Date: Aug 2013 Location: Louisiana Posts: 202

Well it plugged up again on the way home from the weekend. I cracked the exhaust open at the dpf filter to relieve the pressure and make it home. I want to bypass this thing but if there are other issues going on I want to correct them and not just treat the symptoms. My friend who is a Ford mechanic mentioned EGR also and said they have issues with anti freeze getting into the exhaust and clogging the filter. He was unsure on <u>Duramax</u>. Does anyone have any idea why this thing keeps plugging up even though its only a few weeks old??

09-05-2013, 03:00 PM

eBay Motors #10 (permalink)

HD Dmax <u>Machine</u>

Join Date: May 2011 Location: Nomad Posts: 11,320

Dont use the tuner with the DPF still intact. This is why your DPF keeps getting plugged up.

My truck had this $\underline{\mathsf{EGR}}$ valve problem early on. All that the dealer would do was clean the $\underline{\mathsf{EGR}}$ valve. On the last vist to a dealer cause of the EGR valve a service writer said the LMMs are noted for EGR valve problems. He said that they came out with a software update to fix some EGR valve (related problems) in 08.

Best thing you can do is DOC, DPF delete, EGR turned off/unplugged/EGR blocker plate.

DURAMAX DIESEL

2009 GMC <u>2500HD</u> SLE CC/SB 4x4 LMM

EFI Live, Edge Insight CTS, Flo~Pro 4" DP back exhaust w/muffler & stock trumpet tip, EGR disabled, Resonator delete plug, Alum. bleeder screw, WIF sensor delete plug, Fumoto oil drain valve, Pacer LED cab lights, GM dually light bar under tailgate, Footwell lights, Cobra 29 WXNWST CB radio, Wilson 2000 CB antenna, Kenwood speakers, GM chrome oval running boards, Bilstein 5100s, Michelin M/S2 on PY0 wheels, Rubber mud flaps, Curt class IV hitch

Last edited by HD Dmax Machine; 09-05-2013 at 03:03 PM.

Sponsored Links

Remove Advertisements

<u>Duramax Forum</u> Advertisement

SHOCKING! Ellen's Goodbye ...

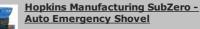
Leaked Secret Has Fans Outraged! She Has Lied For Years [continued here]

Gear in this thread - Powered by O'Reilly Auto Parts

<u>Edelbrock Pro-Flo - Air</u> <u>Cleaner Assembly</u>

Air Cleaner Assembly - Pro-Flo; Chrome Air Cleaner

>> More on <u>Edelbrock</u> <u>Pro-Flo - Air Cleaner Assembly</u>



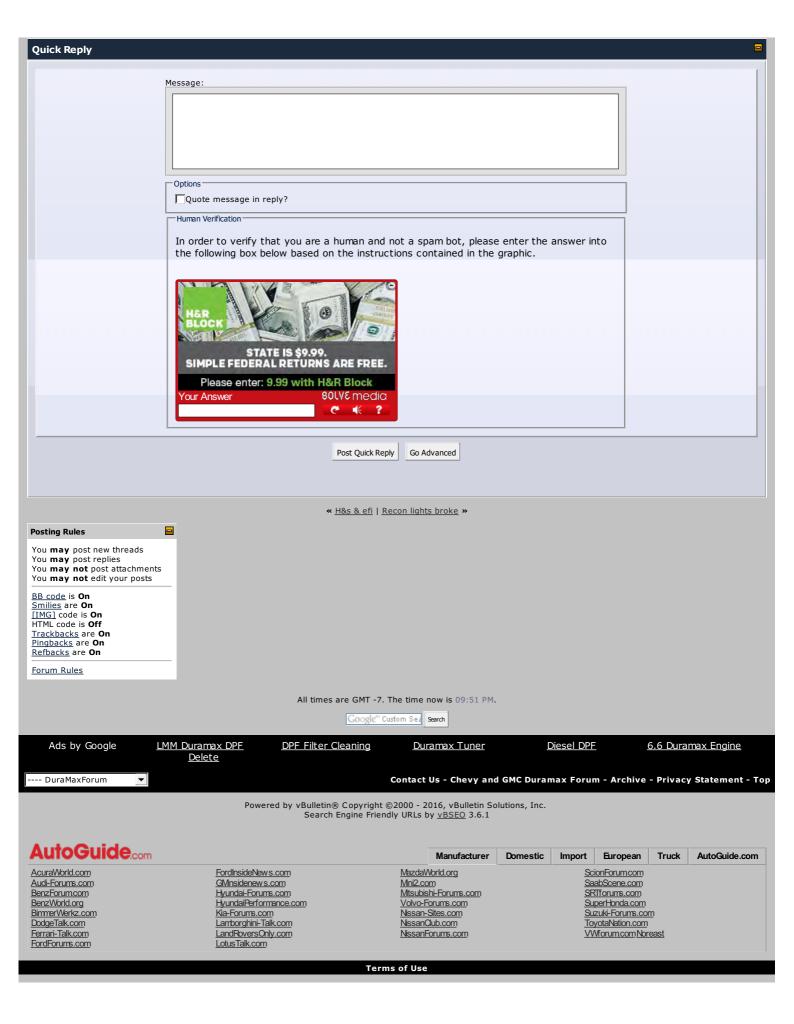
<u>Mechanix Wear - Thermal Dip Hi-Viz Winter Glove</u>

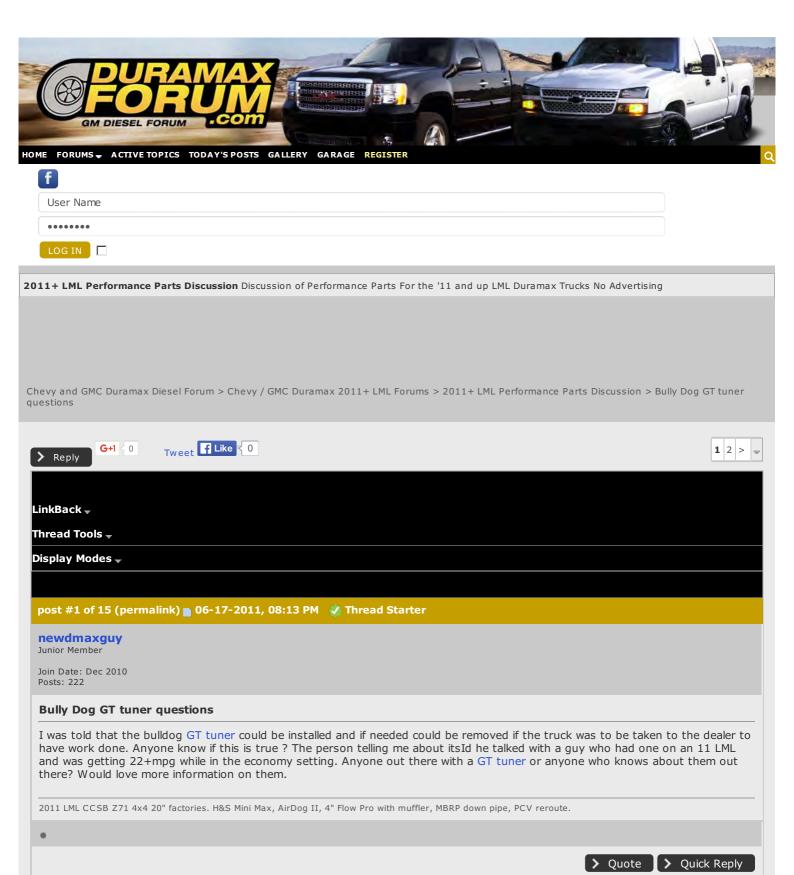
Thermal Dip Hi-Viz Winter Glove - Thermal Dip Hi-Viz; Large/X-Large

>> More on Mechanix
Wear - Thermal Dip Hi-Viz Winter
Glove

Auto Emergency Shovel -

>> More on <u>Hopkins</u>
<u>Manufacturing SubZero - Auto</u>
<u>Emergency Shovel</u>




You May Like

Sponsored Links by Taboola

The Most Outrageous, Amazing, Perfectly Timed Pictures You'll Ever See	15 Adorable Mommy Instagrams Parent Society
All Perfectly Timed	
10 Best Celebrity Pranks of All Time OldCatLady	Dogs That Don't Look Like Dogs Wowticles

Web2
converted by Web2PDFConvert.com

Web2

post #2 of 15 (permalink) 06-17-2011, 08:43 PM

jkf

DuramaxForum Veteran

Join Date: Feb 2010 Location: Mile high AZ Posts: 1,018

Um, I don't know for sure, but I really doubt a bully dog tuner is gonna getcha 22mpg. Most folks on here that have had a bully dog don't have much good to say about them, I had one, it was ok...

And most of the canned tuners are removeable, if they are installed thru the OBD port, but on the LMM, the dealer will be able to see tha it's been tuned with an aftermarket device.

2006 GMC Sierra CCLB 2500HD EFIlive, DSP5, EGR blocked, Magna-flow downpipe, MBRP 5" turbo-back, aFe pro-guard7 Lifetime LED headlights, all on mod, H2 wheels, ride-rite air bags, bed liner, Truck Cover USA, EBC rotors & pads, tie rods sleeved.

Wants 4049vvt, built tranny

NEEDS: TRAIN HORNS!!!

post #3 of 15 (permalink) 06-18-2011, 03:13 PM

DENALI HD3500

DuramaxForum Veteran

Join Date: Feb 2011 Posts: 1,294

Quote ☑:

Originally Posted by **newdmaxguy**

I was told that the bulldog GT tuner could be installed and if needed could be removed if the truck was to be taken to the dealer to have work done. Anyone know if this is true? The person telling me about itsId he talked with a guy who had one on an 11 LML and was getting 22+mpg while in the economy setting. Anyone out there with a GT tuner or anyone who knows about them out there? Would love more information on them.

Bully Dog has no tune for the LML yet. Waste of time useing a tuner without doing full deletes anyway. Your mileage will drop if anything useing a tuner with DPF intact due to the more frequent regen needed from added fuel of the tuner. Bully Dog is really not a good tuner for the DMAX anyway.

 $2015 \; \text{SLT CCSB Summit White on Jet Black sunroof/rear slider/driver alert/ cooled/heated leather/nav/ telescope/tilt steer... \; Z71 \; package \; .$

Previous:2002 LB7 ECSB 2005 LLY CCSB 2007.5 LMM CCSB 2010 CTD CCSB 2011 LML CCSB

> Quote > Quick Reply

post #4 of 15 (permalink) 06-18-2011, 08:16 PM

Blackcloud556

Join Date: Jun 2010

Location: Coeur D'Alene Idaho

Posts: 5,938

Quote:

Originally Posted by DENALI HD3500

Bully Dog has no tune for the LML yet. Waste of time useing a tuner without doing full deletes anyway. Your mileage will drop if anything useing a tuner with DPF intact due to the more frequent regen needed from added fuel of the tuner. Bully Dog is really not a good tuner for the DMAX anyway.

we dont huh?

last i checked we were the first ones to release, and other then H&S the ONLY ones to release for the LML. so cool story bro.

anyways. yes, remove your tune from your truck before you go to the dealer.. if they flash you. we have a \$100 charge to reset your tuner.

Quote Quick Reply

post #5 of 15 (permalink) 06-19-2011, 03:50 PM 🐶 Thread Starter

newdmaxguy

Junior Member

Join Date: Dec 2010 Posts: 222

So have you installed any of these? the \$100 if they flash? meaning that I can take it back to dealership, with tuner removed and they will not know that I have had the tuner on it? and if they reflash then it will be another \$100 to put the tuner back on the truck?

2011 LML CCSB Z71 4x4 20" factories. H&S Mini Max, AirDog II, 4" Flow Pro with muffler, MBRP down pipe, PCV reroute.

DENALI HD3500

DuramaxForum Veteran

Join Date: Feb 2011 Posts: 1,294

Quote:

Originally Posted by **BullyDogJason**

we dont huh?

last i checked we were the first ones to release, and other then H&S the ONLY ones to release for the LML. so cool story

anyways. yes, remove your tune from your truck before you go to the dealer.. if they flash you. we have a \$100 charge to reset your tuner.

Hmmm. Do you have DPF/DEF delete program(off road) and what are the HP and torque gains with full deletes?. Any way with emmisions in tact still useless for any real gains. \$100 for a reflash??? Why the extra cost?? Bully Dog(any programmer) is detectable by dealer and can pose a threat to your drivetrain warranty, period.

 $2015 \; SLT \; CCSB \; Summit \; White \; on \; Jet \; Black \; sunroof/rear \; slider/driver \; alert/ \; cooled/heated \; leather/nav/ \; telescope/tilt \; steer... \; Z71 \; package \; .$

Previous: 2002 LB7 ECSB 2005 LLY CCSB 2007.5 LMM CCSB 2010 CTD CCSB 2011 LML CCSB

.

> Quote > Quick Reply

post #7 of 15 (permalink) 06-21-2011, 08:20 AM

Blackcloud556

Join Date: Jun 2010

Location: Coeur D'Alene Idaho

Posts: 5,938

Ouote:

Originally Posted by **newdmaxguy**

So have you installed any of these ? the \$100 if they flash ? meaning that I can take it back to dealership, with tuner removed and they will not know that I have had the tuner on it ? and if they reflash then it will be another \$100 to put the tuner back on the truck?

ive installed several.

If your truck gets flashed at the dealer and you did not return your truck to stock first we have a \$100 fee to unlock your unit.

yes the dealer can tell if you have installed a tuner or not. It is your responsibility to determine with your dealer if they will void your warranty or not.

post #8 of 15 (permalink) 06-21-2011, 08:24 AM

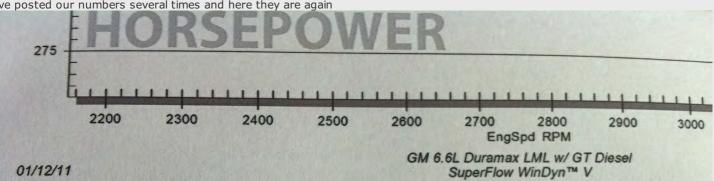
Blackcloud556

Join Date: Jun 2010

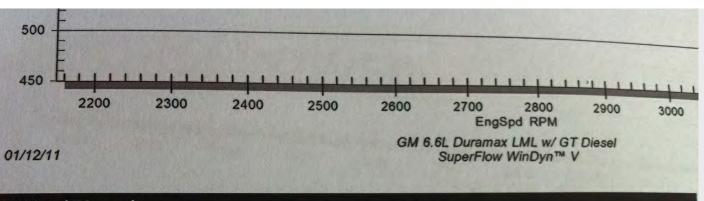
Location: Coeur D'Alene Idaho

Posts: 5,938

Quote:


Originally Posted by **DENALI HD3500**

Hmmm. Do you have DPF/DEF delete program(off road) and what are the HP and torque gains with full deletes?. Any way with emmisions in tact still useless for any real gains. \$100 for a reflash??? Why the extra cost?? Bully Dog(any programmer) is detectable by dealer and can pose a threat to your drivetrain warranty, period.


No we do not do dpf deletes, if you want that go buy an H&S. You have to remember that not everybody wants to remove their emissions equipment.

if you want hp numbers with deletes go check out H&S's website

ive posted our numbers several times and here they are again

GT Diesel TQ results			
	Stock (bone stock)	Performance	Tow
Peak HP	359.6 @ 2840 rpm	425.0 @ 3010 rpm	403.0 @ 2980 rpm
Peak to peak HP gain over stock	-N/A-	65.4	43.4
HP at largest gain over stock (dotted line)	331.5 @ 3200 rpm	419.1 @ 3200 rpm	394.2 @ 3200 rpm
Largest HP gain over stock (dotted line)	0.00	87.6	62.7

	Stock (bone stock)	Performance	Tow
Peak TQ	733.8 @ 2190 rpm	824.8 @ 2200 rpm	791.7 @ 2160 rpm
Peak to peak TQ gain over stock	-N/A-	91	57.9
TQ at largest gain over stock (dotted line)	544.1@3200 rpm	687.9 @ 3200 rpm	647 @ 3200 rpm
Largest TQ gain over stock (dotted line)	0.00	143.8	102.9

the \$100 fee is only if YOU the consumer do not return your truck to stock, and your truck is flashed by the dealer... As long as you remove your tune from your truck there is no additional fees.

> Quote > Quick Reply

post #9 of 15 (permalink) 06-21-2011, 08:43 AM

DENALI HD3500 DuramaxForum Veteran

Join Date: Feb 2011 Posts: 1,294

Thanks for the info.

2015 SLT CCSB Summit White on Jet Black sunroof/rear slider/driver alert/ cooled/heated leather/nav/ telescope/tilt steer... Z71 package .

Previous:2002 LB7 ECSB 2005 LLY CCSB 2007.5 LMM CCSB 2010 CTD CCSB 2011 LML CCSB

Join Date: Jun 2010

Location: Coeur D'Alene Idaho

Posts: 5,938

yep. and keep in mind that these may or may not be the final HP numbers for this engine. we are still working on getting deeper into the ECM and as time progresses tunes and peak HP numbers may change

Gear in this thread - Powered by O'Reilly Auto Parts

Schumacher Electric - Metal Hand-Held Linear Battery Charger/Starter

Metal Hand-Held Linear Battery Charger/Starter - 50 Amp Engine Starter; 10/2 Amp; Fully Automatic; 2 LED

Indicator Lights; Rugged Durable Metal Case; Top Mounted Carrying Handle

>> More on Schumacher Electric - Metal Hand-Held Linear Battery Charger/Starter

Power Service Products Diesel 9-1-1 - Diesel Fuel **Winter Additive**

Diesel Fuel Winter Additive -Winter Rescue Formula; De-Ices Frozen Fuel Filters; Reliquifies Gelled Fuel;

Prevents Fuel Filter Icing; Treats 30 to 75 Gallons; 32 Oz.

- >> More on Power Service Products Diesel 9-1-1
- Diesel Fuel Winter Additive

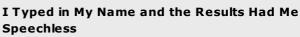
Bosch - Scan Tool

Scan Tool - OBD 1000 Pocket Scan(R) OBD II Code Reader

>> More on Bosch - Scan Tool

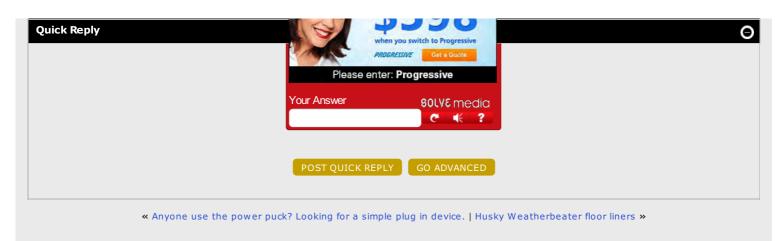
You May Like

How Millions Of Americans Have Cut Years Off Credit Card Payments


LendingTree

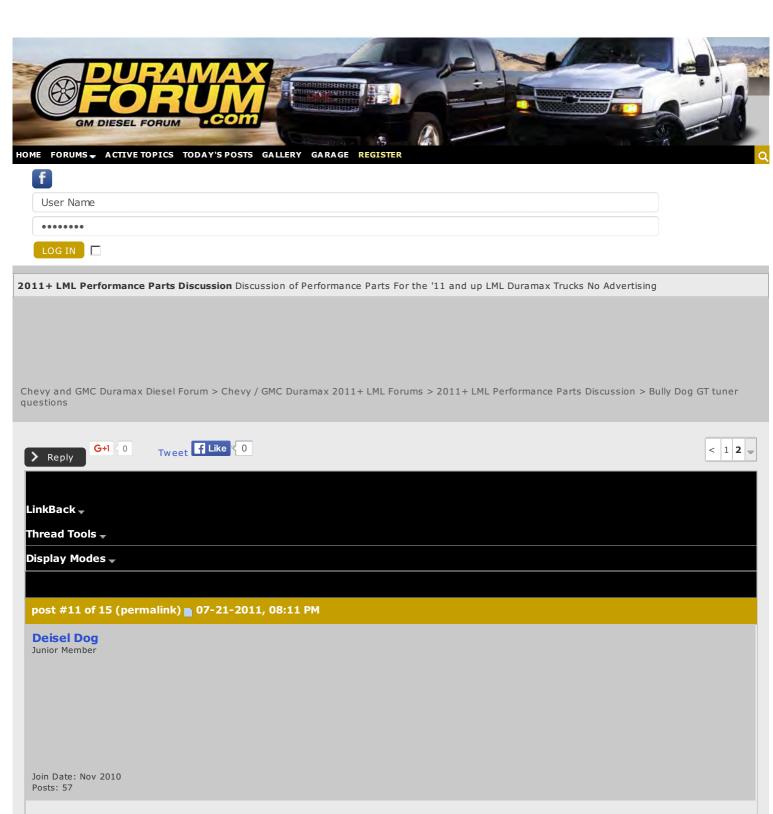
62 or Older? You May Qualify For Tax Free CashAmerican Advisers Group

Reverse Mortgage Loan Center


Instant Checkmate

Quick Reply

Message:


Quious Published Programme Progra

YOU COULD SAVE

Quote ₫:

Originally Posted by **DENALI HD3500**

Waste of time useing a tuner without doing full deletes anyway. Your mileage will drop if anything useing a tuner. Bully Dog is really not a good tuner for the DMAX anyway.

Really? Got a buddy with an 05 completely stock with BD GT and his millage went up from 18 to 23 mpg.

05 GMC Sierra Duramax LLY Crew cab short bed 4" MBRP DP back Hypertech / AFE Turbo Mouth Peice Bilstein 5100's

post #12 of 15 (permalink) 08-01-2011, 02:38 AM Duramax Lifetime Supporter PREMIUM MEMBER Join Date: Oct 2009 Location: Fort Mcmurray Posts: 81 Those HP numbers are nice but how about EGT's with the stock exhaust? If EGT's are decent i would consider. 2011 GMC 3500 Denali Dually, AMP boards, Reese 20K hitch, H&S mini maxx, Flow pro 5" turbo back. 2012 M8 2011 Fuzion 305 2011 RZR xp 900 2010 Harley muscle 2009 Pitster

post #13 of 15 (permalink) 08-03-2011, 10:26 AM

NCR Motorsports

Banned

Join Date: Jun 2011 Location: 61701 Posts: 67

Thanks for posting the stuff on Bully Dog and the performance numbers. I am also one who does NOT want to remove their emissions equiptment, so contrary to what Denali has said its NOT a waste. All my other diesels also pick up fuel mileage with a tuner on a stock truck. Not sure where he gets some of his info but becareful posting it if its not warranted or proven. :booboo

> Quote > Quick Reply

post #14 of 15 (permalink) 08-03-2011, 03:48 PM

DENALI HD3500

DuramaxForum Veteran

Join Date: Feb 2011 Posts: 1,294

Quote:

Originally Posted by Deisel Dog

Really ? Got a buddy with an 05 completely stock with BD GT and his millage went up from 18 to 23 mpg.

The LLY in an 05 does not have DPF and regen ther is no comparason in emmisions between the pre 07.5 Duramax and post 07.5 Duramax fuel system and emission equipment, my 05 did gain a small amount with an edge and all stock. However the LMM and LML have DPF and regen, and on my LMM the tuner did not improve economy overall, this was due to slightly more regen from added fuel(especially when hot rodded). To gain maximum MPG the regen process HAS to be deleted as well.

 $2015 \; SLT \; CCSB \; Summit \; White \; on \; Jet \; Black \; sunroof/rear \; slider/driver \; alert/ \; cooled/heated \; leather/nav/ \; telescope/tilt \; steer... \; Z71 \; package \; .$

Previous:2002 LB7 ECSB 2005 LLY CCSB 2007.5 LMM CCSB 2010 CTD CCSB 2011 LML CCSB

post #15 of 15 (permalink) 08-03-2011, 03:52 PM

DENALI HD3500

DuramaxForum Veteran

Join Date: Feb 2011 Posts: 1,294

Ouote:

Originally Posted by NCR Motorsports

Thanks for posting the stuff on Bully Dog and the performance numbers. I am also one who does NOT want to remove their emissions equiptment, so contrary to what Denali has said its NOT a waste. All my other diesels also pick up fuel mileage with a tuner on a stock truck. Not sure where he gets some of his info but becareful posting it if its not warranted or proven. :booboo

I get my info from first hand trial and error. Not only with my diesel trucks but with the feedback from my customers that have had me perform tuner and deletes and the ones that just ask for tuner and no emmision alterations. The ones getting the best mileage on the 07.5 and up GM diesel are fully deleted and tuned. The pre DPF truck all gain even with Cat system. No hard feelings, i'm

here to help and learn and respect any reasonable comments toward me.

 $2015 \; \text{SLT CCSB Summit White on Jet Black sunroof/rear slider/driver alert/ cooled/heated leather/nav/ telescope/tilt steer... \; Z71 \; package \; .$

Previous: 2002 LB7 ECSB 2005 LLY CCSB 2007.5 LMM CCSB 2010 CTD CCSB

Last edited by DENALI HD3500; 08-03-2011 at 03:54 PM.

Gear in this thread - Powered by O'Reilly Auto Parts

Wolo - Sirius 2(TM) Halogen Mini Bar Light

Sirius 2(TM) Halogen Mini Bar Light - Amber Lens; Magnetic Mount; 12 Volt, 6.5 Amps

Mechanix Wear - Thermal Dip Winter Glove

Thermal Dip Winter Glove -Thermal Dip Glove Small/Medium

>> More on Mechanix Wear - Thermal Dip Winter

PowerTorque Tools - Ratchet Handle & Socket Set

Ratchet Handle & Socket Set - 14 Piece; 1/4" Drive Ratchet Handle & Metric Socket Set

>> More on PowerTorque Tools - Ratchet Handle & Socket Set

OR OR OTHER PARTS

>> More on Wolo - Sirius 2(TM) Halogen Mini Bar Light

OREIN AUTO PARTS

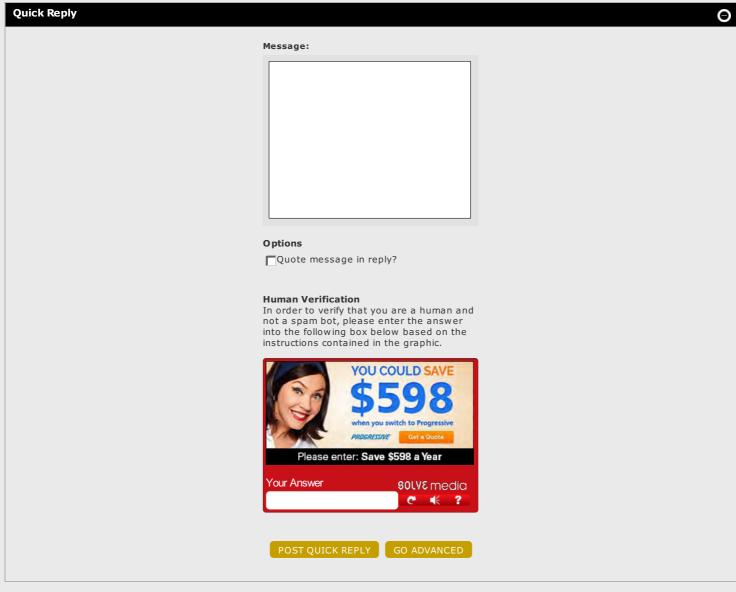
You May Like

How Millions Of Americans Have Cut Years Off Credit Card Payments

LendingTree

(2016) You're In For A Big Surprise If You Own A Home in Virginia

Bills.com



62 or Older? You May Qualify For Tax Free Cash

American Advisers Group

Doing A Reverse Mortgage, How Much Cash Do You Get?

« Anyone use the power puck? Looking for a simple plug in device. | Husky Weatherbeater floor liners »

--- DuramaxForum.com (Full)

Contact Us | Advertise | Chevy and GMC Duramax Forum | Archive | Privacy Statement | Top

Terms of Use